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Abstract. The high efficient task assignment and
fast path planning for small unmanned aerial vehicles
(UAVs) indoor task planning play a crucial role. Con-
sidering the complex indoor environment and multi-
constraints on UAVs, the paper focuses on the problem
of multi-task planning of heterogeneous UAVs with d-
ifferent abilities based on the indoor topological map.
First, we model this problem as a multi-objective bi-
level optimization problem. The objectives include the
completion rate of the tasks and the consumption of
UAVs performing the tasks. Then, the constraints on
UAVs in an indoor environment are analyzed and the
topological map is applied to the UAVs’ path planning.
The problem is solved by using four multi-objective
optimization algorithms including NSGA-II, SPEA2,
MOEA/D, and MOPSO. Finally, computational exper-
iments are conducted with test instances of different
scales. The experimental results show that NSGA-II
and SPEA2 can find significantly better Pareto fronts.

Keywords: Multi-task Planning; Path Planning; Multi-
objective Optimization Problem; Topological Map.

1. Introduction

Unmanned aerial vehicles (UAVs) are gaining more
and more significance due to their adoption in a wide va-
riety of engineering fields, such as surveying, monitor-
ing, or precision agriculture [1]. Task assignment and
path planning for multiple UAVs in the above scenarios
are essential for successful mission execution. But, effec-
tively balancing tasks to better excavate the potential of
UAVs remains a challenge, as well as efficiently generat-
ing feasible solutions from the current one in constrained
explosive solution spaces with the increase in the scale of
optimization problems. [2] proposed an efficient approach
for task assignment and path planning with the objective
of balancing the tasks among UAVs and achieving satis-
factory temporal resolutions.

For task assignment of multiple UAVs, many method-
s have been adopted to address this problem. For ex-
ample, a hierarchical task assignment method was pro-

posed in [3], which broke the original problem down to
sub-problems and solved them with mixed-integer pro-
gramming and ant colony algorithm. For UAVs with d-
ifferent sensor capabilities, a modified symbiotic organ-
isms search algorithm was adopted to optimize UAVs-
task sequence [4]. In article [5], an iterative strategy was
proposed to enhance the performance of task assignment
and path planning in applications of distributed multiple
UAVs. For task allocation problems in a dynamic envi-
ronment, article [6] proposed a quantum evolutionary in-
spired algorithm to minimize resource consumption and
enhance the reliability of the coalitions of UAVs.

The article discussed above provides some useful meth-
ods for task assignment and path planning of UAVs. How-
ever, some important issues also urgently need to be ad-
dressed. Compared with the outdoor environment such as
the urban environment and mountain environment, indoor
environment has more restrictions on UAVs [7]. In out-
door environment, there may be no-fly areas and danger-
ous areas, such as bad meteorological areas and electro-
magnetic interference areas [8], which require the UAVs
path to avoid those areas or pass through those areas in the
shortest possible time. In contrast in indoor environment,
these constraints may be different. Specifically, for mobil-
ity, the UAVs cannot move forward smoothly in an indoor
environment because of the narrow indoor space, the lim-
ited size of doors and windows, and the safe distance of
UAVs. Besides, there are many obstacles and occlusion-
s in indoor environment, and the presence of some glass
and mirrors on the windows and walls will directly inter-
fere with visibility. Indoor environment is GPS-denied,
so it directly weakens the positioning and communication
ability of the UAVs. What’s more, there are many metal
materials and electromagnetic sources indoors, which will
also affect the communication capabilities of the UAVs.

The main contributions of this paper are shown as fol-
lows:
•First, a framework for UAVs’task planning based on in-
door topological maps is established.
•Second, the influences of the indoor environment on the
mobility of UAVs are modeled.
•Finally, the paper solves the multi-objective bi-level op-
timization problem by using four different prevalent algo-
rithms.

The remainder of this paper is organized as follows.
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Section 2 gives the problem description and the mathe-
matical model. The details of the algorithms used in this
paper are described in Section 3. Numerical experiments
are conducted in Section 4, followed by conclusions in
Section 5.

2. Problem Formulation

The problem of multi-task planning of heterogeneous
UAVs based on the indoor topological map can be de-
composed into two levels. The first level is the multi-UAV
multi-task assignment problem, and the second level is the
multi-UAV path planning problem.

For the multi-UAV multi-task assignment problem,
firstly, the overall task is divided into multiple task points.
The task points are heterogeneous because they have dif-
ferent functional requirements for the UAVs. So the task
points may be assigned to a single UAV or multiple UAVs.
Suppose that when the UAVs perform the same task point,
there is no requirement for the time sequence. UAVs are
also heterogeneous because the sensors carried by them
are different. So UAVs may be assigned to a single task
or multiple tasks in an assignment plan. After task assign-
ment, each UAV will plan the paths.

For multi-UAV path planning, it can be abstracted as a
traveling salesman problem (TSP). The main purpose for
each UAV is to visit all the task points and perform the
corresponding reconnaissance task. In this process, the
UAVs need to meet all the constraints of the system, and
the time it takes to complete all tasks is expected as small
as possible. Suppose that when two UAVs arrive at a task
point at the same time or meet during execution of a task,
the collision of UAVs is not considered.

Paper [9] proposed a generalized optimization frame-
work of cooperative path planning problems from the
viewpoint of three key elements, i.e., task, UAV group,
and environment. Inspired by paper [9], the key elements
in the problem of multi-task planning based on a topolog-
ical map will be presented.

(1) UAVs
Heterogeneous UAVs with different abilities are used

to perform the tasks.
(2) Reconnaissance tasks
Each UAV needs to find an optimal or feasible path

from the initial location to the task points, and then re-
connoiter the task points.

(3) Indoor environment
Fig.1 represents a floor plan view of the interior of a

building. Each polygon represents a room. R1-R8 repre-
sents the number of rooms. They are connected by doors.

There are two objectives in multi-task planning prob-
lem. One is the path consumption of UAVs and the oth-
er is satisfaction rate of tasks demand in an assignment
plan. Constraints are mainly manifested in the impact on
UAVs’ mobility. The overall framework of task planning
is shown in Fig.2. In the figure, we first solve the problem
of task assignment, and then solve the problem of path
planning .

Fig. 1. The indoor environment.
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Fig. 2. The overall framework of task planning.

2.1. Objective Function
In this paper, we model the multi-task planning of het-

erogeneous UAVs as a multi-objective bi-level optimiza-
tion problem and solve it using prevalent multi-objective
optimization algorithms. The two objectives in our prob-
lem are as follows:

(1) The first objective is satisfaction rate of task de-
mand. Satisfaction rate of task demand is as large as pos-
sible. The first objective is represented by f1. The formula
of f1 is as follows:

f1 =
J

∑
j=1

w2 j(
Z

∑
z=1

w1z((
I

∑
i=1

uiz)/t jz)), . . . . . (1)

where i means the ith UAV and the maximum value of i
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is I. j means the jth task and the maximum value of j is
J. z means the zth sensor of UAV and the maximum value
of z is Z. w1z represents the weight of the zth sensor in a
task point. w2 j represents the weight of the jth task point
in the total task. t jz represents the zth sensor’s demand in
jth task point. uiz represents the zth sensor’s ability in ith
UAV.

For convenience, the first objective will be normalized.
The formula is as follows:

f ′1 = (M− f1)/M, . . . . . . . . . . . (2)

where M means the maximum value of satisfaction rate of
task demand. f′1 is as small as possible.

(2) The second objective is the path consumption of the
UAVs during performing the tasks represented by f2. f2 is
as small as possible. The formula of f2 is as follows:

f2 =
I

∑
i=1

ci, . . . . . . . . . . . . . . (3)

where ci represents the ith UAV’s path consumption when
it completed all its tasks.

For convenience, the second objective will be normal-
ized. The formula is as follows:

f ′2 = (Mc − f2)/Mc, . . . . . . . . . . . (4)

where Mc represents the maximum value of all UAVs’
path consumptions. f′2 is as small as possible.

2.2. Constraints
The main influence on UAVs during task planning is

the complex indoor structure. Topological maps are con-
venient for UAVs to plan the path in indoor environments.
The paper uses the topological map to construct the con-
nection relationship between the rooms. The topological
map in Fig.3 is constructed depending on Fig.1. The s-
traight line between R1 and R2 means that they are con-
nected.

Constraints in multi-UAV task planning problem are
shown as follows:

(1) The first constraint is that satisfaction rate of task
demand must be greater than each task’s threshold,

I

∑
i=1

uiz ≥ θ jzt jz, . . . . . . . . . . . . . (5)

where θ jz is the threshold of zth sensor’s demand in jth
task point. This constraint ensures that the selected UAVs
have the abilities to perform the tasks.

(2) The second constraint is that the path consumption
of each UAV must be less than its maximum endurance,

ci ≤ ei, . . . . . . . . . . . . . . . . (6)

where ei means the ith UAV’s maximum endurance. This
constraint ensures that the solution is feasible. If the con-
sumptions of UAVs are more than their maximum en-
durance, we will judge the solution as an infeasible one.
Then, the infeasible solutions are used to generate new
solutions by evolutionary operation in MOEAs.

(3) The third constraint is that the paths planned by the
UAVs must meet the connection relationship of the in-
door topology map. This constraint ensures that the paths
planned for the UAVs are all passable.

Fig. 3. The topological of Fig.1.

3. MOEAs on The Problem

Multi-objective evolutionary algorithms(MOEAs) are
popular methods for approximating the whole Pareto
front (PF) in a single run. According to the selection s-
trategies, MOEAs can be grouped into three categories:
Pareto domination based MOEAs (e.g., NSGA-II [10], S-
PEA2 [11]), indicator based MOEAs, and decomposition
based MOEAs (e.g., MOEA/D [12]). There are four algo-
rithms used in the paper that belong to the three categories
mentioned above. In Pareto domination based MOEAs,
we use NSGA-II and SPEA2. In decomposition based
MOEAs, we use MOEA/D. In the swarm intelligence al-
gorithm, we use MOPSO [13].

(1) NSGA-II [10] classifies a population into differen-
t non-dominated fronts and calculates the sharing func-
tion values of individuals located on the same front to ob-
tain good diversity of a population. NSGA-II is good at
searching the PF, can achieve good population diversity,
and allow for the existence of multiple equivalent indi-
viduals. First, NSGA-II utilizes the fast non-dominated
sorting procedure which has a low computation complex-
ity, then NSGA-II maintains the parent population and
the offspring population at the same time and adopts the
elitism mechanism to select the best solutions.

(2) SPEA2 [11] maintains an archive to store non-
dominated solutions during the evolutionary process and
updates it iteratively. The fitness function value of each
solution in SPEA2 is defined as the number of solution-
s that the current one dominates. Besides, the clustering
method is used to maintain the diversity of a population.
SPEA2 utilizes a fitness function and maintains the pop-
ulation diversity by estimating the density of neighboring
solutions.

(3) MOEA/D [12] decomposes a complicated MOP in-
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to a series of simple subproblems and solves them in a col-
laborative way to obtain a set of non-dominated solution-
s with good convergence and diversity. Decomposition-
based MOEAs first attempt to combine classical optimiza-
tion algorithms with EAs. MOEA/D converts an MOP
into a series of scalar subproblems by using aggregation
functions (e.g., weighted sum, Tchebycheff, PBI, and so
on) and a set of uniformly distributed weight vectors. The
concept of neighbor is defined based on Euclidean dis-
tance among weight vectors. These subproblems are opti-
mized simultaneously by using information from neigh-
boring subproblems, which leads to low computational
complexity. Besides, the diversity of a population is guar-
anteed by a set of uniformly distributed weight vectors
implicitly.

(4) MOPSO [13] utilizes directional information to
promote faster approximation of the Pareto front, which
makes it compatible with other optimization programs.
First, the position of every particle is initialized, and ve-
locity is set to zero. The initial position is considered as a
personal best, and it is updated in succeeding steps. Glob-
al archive is used in MOPSO to store non-dominated op-
timum solutions of the population. Initially, the global
archive is empty, but it can store the user-specified maxi-
mum number of Pareto solutions, and it is updated at ev-
ery generation. If the number of non-dominated solutions
exceeds, a few solutions are discarded. One of the unique
features of MOPSO is that every individual particle also
has a personal archive, and it is recognized as a person-
al best archive. During every iteration, global best and
personal best are assigned from the personnel archive and
global archive.

3.1. Encoding and Decoding
The solution of the first level of the optimization prob-

lem is a task assignment plan. The encoding of this prob-
lem is shown as the following formula:

s1 =



a11 a12 · · · a1 j · · · a1J
a21 a22 · · · a2 j · · · a2J

...
... · · ·

... · · ·
...

ai1 ai2 · · · ai j · · · aiJ
...

... · · ·
... · · ·

...
aI1 aI2 · · · aI j · · · aIJ


, . . (7)

where s1 is a solution of the first level. i means the ith
UAV and the maximum value of i is I. j means the jth
task and the maximum value of j is J. ai j ∈ {0, 1}, ai j =1
means the ith UAV is assigned to perform the jth task, ai j
=0 means the ith UAV is not assigned to the jth task.

The solution of the second level of the optimization
problem is a path sequences. The encoding of this prob-
lem is shown as the following formula:

s2 =
[

p1 p2 · · · pm · · · pM
]
, . . . (8)

where s2 is a UAV’s solution of the second level. m means
the mth task point and the maximum value of m is M. At
this level, the encoding form of every UAV is the same as

the formulation mentioned above. In every task assign-
ment plans, the value of M may be different.

3.2. Crossover Operator and Mutation Operators
The crossover and mutation operators are designed ac-

cording to the characteristics of the multi-task planning.
An example of crossover operation is shown as follows:

a1 = [a11 a12 · · · a1 j · · · a1J]

ai = [ai1 ai2 · · · ai j · · · aiJ]

↓
ai = [a11 a12 · · · a1 j · · · a1J]

a1 = [ai1 ai2 · · · ai j · · · aiJ],

. . . (9)

where a1 is the task points assigned to the first UAV. ai is
the task points assigned to the ith UAV. Crossover opera-
tion is that the first UAV and the ith UAV exchange their
task points.

An example of mutation operation is shown as follows:

a1 = [a11 a12 · · · a1 j · · · a1J]

↓
a1 = [1−a11 1−a12 · · · 1−a1 j−1

a1 j · · · a1J],

. . (10)

where j equals to ⌊rand∗J⌋, and rand is a random real
number between 0 and 1.

4. Computational Experiments

To provide a fair comparison, we use the same repro-
duction operators in each compared algorithm. Parame-
ter settings adopted here are the same as those claimed
in [10], [11], [12], and [13]. We set population size to 600
and set the number of iterations to 10000. All the com-
pared algorithms are implemented in MATLAB R2018b
and run 20 times independently on a workstation ( In-
tel(R) Core (TM) i7-8700 CPU @ 3.20GHz 3.19 GHz,
16.00 GB of RAM ).

4.1. Performance Metric
In the experimental study, we use the inverted gener-

ational distance (IGD) metric which is a comprehensive
index of convergence and diversity [14] to evaluate the
performance of all compared algorithms. Let P∗ be a set
of evenly distributed points over the PF (in the objective
space). Suppose that P is an approximate set of the PF,
the average distance from P∗ to P is defined as:

IGD(P∗,P) =
∑v∈P∗ d(v,P)

|P∗|
, . . . . . . . (11)

where d(v, P) is the minimum Euclidean distance be-
tween v and the solutions in P. When P∗ is large enough,
IGD(P∗, P) can measure both the uniformity and the con-
vergence of P. A low value of IGD(P∗, P) indicates that P
is close to the PF and covers most of the whole PF. For all
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the benchmark algorithms, we use the evolutionary pop-
ulation as the population P to calculate the IGD metric.
The experiments run 20 times for each algorithm inde-
pendently, sort all the objectives in the Pareto fronts by
non-dominated relations, and find the approximate Pareto
front P∗. A smaller IGD value implies a better perfor-
mance.

The HV metric measures the size of the objective space
dominated by the solutions in P and bounded by the refer-
ence point r, r=(r1, . . ., rm) is a reference point in the ob-
jective space dominated by any Pareto optimal point [15].
It is defined as:

HV (P,r)=VOL(
∪
x∈P

[ f1(x),r1]×. . .×[ fm(x),rm]),(12)

where VOL(·) is the Lebesgue measure. A larger HV val-
ue implies a better performance.

4.2. Test Instances
(1)Test instance 1
In test instance 1, there are 5 UAVs to perform recon-

naissance tasks. 10 task points with different demands
need to be reconnoitered. The approximate Pareto fronts
obtained by four algorithms in test instance 1 are shown
in Fig.4.
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NSGA-II
MOPSO
SPEA2

Fig. 4. PFs of four algorithms in test instance 1.

As shown in Fig.4, NSGA-II and SPEA2 perform
well in convergence and coverage. We choose a solu-
tion in the Pareto front randomly which objectives are
[0.2778;0.5685] and the routes of the UAVs in the solu-
tion are shown in Fig.5. In the figure, the lines in different
color represent the paths of the different UAVs. ∗ repre-
sents the task points.

(2)Test instance 2
In test instance 2, there are 15 UAVs to perform re-

connaissance task. 25 task points with different demands
need to be reconnoitered. The approximate Pareto fronts
obtained by four algorithms in test instance 2 are shown
in Fig.6. The routes of the UAVs are shown in Fig.7.

As shown in Fig.6, NSGA-II performs well in conver-
gence and coverage. We choose a solution in the Pareto

Fig. 5. The routes of test instance 1.
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Fig. 6. PFs of four algorithms in test instance 2.

front randomly which objectives are [0.1265;1.2464] and
the routes of the UAVs in the solution are shown in Fig.7.

Fig. 7. The routes of test instance 2.

(3)Test instance 3
In test instance 3, there are 30 UAVs to perform re-

connaissance task. 50 task points with different demands
need to be reconnoitered. The approximate Pareto fronts
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obtained by four algorithms in test instance 3 are shown
in Fig.8. The routes of the UAVs are shown in Fig.9.
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Fig. 8. PFs of four algorithms in test instance 3.

Fig. 9. The routes of test instance 3.

Table 1. Statistical results in test instance 1-3.

Methods MOEA/D NSGA-II MOPSO SPEA2
IGD-1 0.0168 8.9014e-04 0.0139 7.7085e-04
HV-1 0.5399 0.8041 0.7022 0.7595
IGD-2 0.0327 0.0065 0.0360 0.0014
HV-2 3.2447 3.7698 2.6515 4.8509
IGD-3 0.0467 0.0130 0.0157 0.0011
HV-3 2.8229 2.6269 2.2631 3.8016

As shown in Fig.8, SPEA2 performs well in conver-
gence and coverage. We choose a solution in the Pareto
front randomly which objectives are [0.3068;1.2341] and
the routes of the UAVs in the solution are shown in Fig.9.
In the figure, the lines in different color represent the paths
of the different UAVs.

Table 1 shows the IGD and HV values of the four algo-
rithms. NAGA-II and SPEA2 performs relatively well in
coverage and convergence.

5. Conclusions

This paper focuses on the problem of multi-task plan-
ning of heterogeneous UAVs based on the indoor topo-
logical map, models this problem as a multi-objective op-
timization problem, and solves it by using four differen-
t multi-objective optimization algorithms. Different test
instances are conducted and get the approximate Pareto
fronts. The experimental results show that NSGA-II and
SPEA-II perform well in convergence and coverage rela-
tively.

In the future, we plan to analyze the constraints on
UAVs’ visibility and communication ability in indoor en-
vironments. We will also consider the opening and clos-
ing state of the doors and model the constraint on UAVs’
path planning.
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