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Abstract. The in-loop filter module of High Efficiency
Video Coding (HEVC) standard improves the recon-
struction quality of compressed video frames, but it
also brings bitrate increasing. In this paper, we aim
to replace the existing in-loop filter module of HEVC
with convolutional neural network (CNN) to facili-
tate HEVC intra coding performance on both visual
quality and bitrate. First, two consecutive 3× 3 con-
volutional layers are adopted instead of original 5×
5 convolutional layer in Variable-filter-size Residue-
learning CNN(VRCNN) to increase the nonlinearity
and expression ability, then we incrementally utilize
dense connection to boost unimpeded information flow
among three blocks. Finally, the proposed reconstruc-
tion network called Variable-Small-filter-size Residue-
learning Dense CNN (VSRDCNN) is obtained. The
dataset is gotten by HEVC compression which turns
off the in-loop filter module with four quantization
parameters (QPs). In a progressive way, the weights
of VSRDCNN on the highest QP 37 are obtained by
training and are used as initial weights for VSRDCNN
on the other three QPs. At last, the trained CNNs
are used to replace the in-loop filter in HEVC to get
better restoration performance. The proposed VS-
RDCNN is validated both subjectively and objectively
via extensive experiments on HEVC standard test se-
quences. Experimental results show that the proposed
VSRDCNN outperforms HEVC 0.30 dB on BDpsnr
and 0.51% reduction on BDrate, and achieves the low-
est BDrate compared with the state-of-the-art work.

Keywords: Convolutional Neural Network (CNN), High
Efficiency Video Coding (HEVC), in-loop filter, super
resolution

1. Introduction

The video without compression will occupy amount of
size, resulting in taking more amount of disk space and
timing. In recent years, the dramatical increase of video
content presents great significance and pressure on video
compression which enables to reduce the transmission
bitstream while ensuring the visual quality. To address
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Fig. 1. : The workflow of hybrid video coding

this, video coding standards have been initiated including
Advanced Video Coding (AVC/H.264), High Efficiency
Video Coding (HEVC/H.265) and Versatile Video Cod-
ing (VVC/H.266). These coding standards all employ a
similar framework called as hybrid video coding as illus-
trated in Figure 1 and improve compression performance
generation by generation. Hybrid coding is a combina-
tion of prediction coding and transform coding. Inter-
frame prediction based on motion compensation is used
to compress temporal redundancy, and transform such as
DCT is used to compress spatial redundancy. The com-
pressed original frame is restored to reconstructed frame
by dequantization and inverse DCT.

However, in some senses, compression and ensuring vi-
sual quality are at the two ends of a spectrum of problems,
i.e., there are distortion and artifacts especially at low bi-
trate in the process of compression including blocking ar-
tifact which is visible discontinuities at block boundaries
owing to block-based coding, blurring which is as a re-
sult of losing high-frequency components, ringing, color
bias and so on. These artifacts may greatly decrease the
visual perception quality of reconstructed image or video
frames. Therefore, how to reduce or eliminate these arti-
facts plays an important role in video frame reconstruction
and has been extensively researched in the literature. In-
loop filtering module of above coding standards is served
as diminishing distortion and artifacts which mainly con-
sists of two post-processing techniques namely deblock-
ing filter (DBF) and sample adaptive offset (SAO) in both
HEVC and VVC. DBF is designed to adaptively suppress
artifacts along block boundaries using low-pass smooth-
ing filters and not requires any additional bit. SAO which
demands for additional bit is invoked after DBF to make
a nonlinear adjustment that adds offsets to samples for in-
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hibiting general compression artifacts. Adaptive loop fil-
ter (ALF) is the unique and the third technique in VVC
based on HEVC, which minimizes distortions between
the original and reconstructed blocks using an adaptively
trained low-pass filter. All of these can suppress the arti-
facts for the major cases. However, the performances are
still far from expectation, especially at low bit rates.

Convolutional neural network (CNN), as the most pop-
ular model of deep learning, has made great progress in
the analysis, recognition and processing of images and
videos. It has also been used in restoration of com-
pressed image and video to depress distortion and arti-
facts, achieving improvement of visual perception quality,
and saving of bitrate compared with above in-loop filter
module in current video coding standards.

In the codec combined with CNN, there are mainly
two cases in the restoration of compressed video frames.
One is to replace some composition of in-loop filter
module with designed CNN which can avoid bitrate in-
crease because of omitting SAO of in-loop filter but it re-
quires comprehensive network to restore video frame with
good visual quality. Amongst networks which belong to
this, Variable-filter-size Residue-learning CNN(VRCNN)
[1] adopted variable filter size based on ARCNN [2] to
achieve higher bitrate reduction, lower memory, and mul-
tiple computational speedups. MMS-net [3] which con-
sisted of two sub-networks of different scales exploited
the compression parameters from coding tree units (CTU)
as input to alleviate blocking artifacts on the reconstructed
images. The other is to post-process the video frame
with designed CNN which can keep the reconstruction
effect of original in-loop filter module but it brings the
bitrate raising. Amongst networks which belong to this,
RHCNN [4], following in-loop filter, was composed of
several residual highway units and convolutional layers
which allowed unimpeded information across several lay-
ers. DRCNN [5] which was between DBF and SAO took
advantages of dense shortcuts and residual learning and
exploited the multi-level features to fused the hierarchical
feature. CACNN [6], after SAO, proposed content-aware
multimodal filtering mechanism to realize the restora-
tion of different regions which were the different Coding
Tree Unit (CTU). MFRNet [7], for both post-processing
and in-loop filter in video compression, contained four
MFRBs which was connected using a cascading structure
to reuse high dimensional features.

We found the previous VRCNN which adopted variable
filter sizes was very fit to the variable block partitions of
HEVC, so when it was used to substitute for the in-loop
filter module, it achieved good visual performance and on
average 4.6% bitrate reduction compared to HEVC base-
line. Stimulated by this, an improved CNN architecture
based on VRCNN is proposed in this paper. We first de-
sign an improved CNN named as Variable-Small-filter-
size Residual-learning CNN(VSRCNN) which replaces
5×5 convolutional layer of VRCNN by two consecutive
3× 3 convolutional layers for raising the nonlinearity of
model. Then, a further improved CNN called as Variable-
Small-filter-size Residue-learning Dense CNN (VSRD-
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Fig. 2. : The pipeline of HEVC combined with CNN

CNN) employing residual and dense connection is pro-
posed to increase the feature expression ability of the net-
work. Finally, the proposed VSRDCNN has been inte-
grated into HEVC intra coding for gradually improving
the coding performance. Compared with the original in-
loop filter module of HEVC, the proposed super resolu-
tion CNN not only realizes the bitrate saving under the
same visual quality, but also realizes the visual quality
improvement under the premise of the same bitrate. Fur-
thermore, the proposed VSRDCNN demonstrates supe-
rior performance when it is compared to other restoration
CNNs including VRCNN.

The remainder of the paper is organized as follows.
Section 2 presents the details of proposed VSRCNN and
VSRDCNN. Together with discussing the specifics of
training and using designed CNNs, Section 3 reports the
experimental results, followed by conclusion in Section 4.

2. Designed Networks

In this section, we will first point out the position of
our network in HEVC. The following will be the demon-
stration of three networks of which the first is VRCNN
proposed in literature [1], the remaining is our own de-
signed network including the structure, configuration, and
the reason why we do this.

2.1. CNN-based Coding Module
The CNN-based in-loop filter module used in HEVC

is illustrated in Figure 2. We train our neural network
in advance and then integrate it into HEVC whose DBF
and SAO are turned off. The compressed frame waiting
for restoration is fed into CNN (yellow box) rather than
original in-loop filter module (gray box), producing the
final reconstructed frame.

2.2. VRCNN
There are four layers in VRCNN which are considered

as the four steps to reduce artifacts: feature extraction,
feature enhancement, mapping, and reconstruction. The
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Fig. 3. : The structure of VRCNN

Table 1. : The configuration of VRCNN

Layer 1 2 a 2 b 3 a 3 b 4
Conv 1 2 3 4 5 6

Filter Size 5×5 5×5 3×3 3×3 1×1 3×3
Channels 64 32 16 48 16 64

structure of VRCNN is shown in Figure 3 and its config-
uration is given in Table 1.

One of the contributions of VRCNN is the diversity of
filter size which is similar to the famous network called as
GoogLeNet [8] that uses the combination of different size
filters to extract different scale information of input image
and achieves an excellent result on image classification.
At the same time, the variable filter sizes correspond to
the variable coding blocks in HEVC on which the trans-
form is based and why the blocking effect amongst ar-
tifacts is produced. Quantization of the transformed co-
efficients causes distortion. Therefore, VRCNN reduces
artifacts by using a combination of features extracted by
two-size filters. The combination of 5×5 filter and 3×3
filter in the second layer plays an important role in mak-
ing the “noisy” feature “cleaning” which is equivalent to
denoise the feature maps. The third layer assembles 3×3
filter and 1× 1 filter is designed to perform restoration
of features. The reason why variable-filter-size method
is not used in the first layer and the fourth layer is that
these layers implement feature extraction and reconstruc-
tion respectively, which is not affected by the variable-
size blocks in HEVC.

In addition, another technique of VRCNN is the skip
connection between input and output which is the contri-
bution of ResNet [9], enabling the whole network to learn
the residue. Compared with the network learning an iden-
tity mapping between input and output, learning residue,
i.e., the high frequency component of image is easier, be-
cause it is difficult for the former to not appear degrada-
tion in the process of network training. However, by using
the latter, residual learning ensures the network signal can
back-propagate to previous layer directly.

2.3. The Improved VSRCNN
We redesigned the convolutional kernel size of

VRCNN named as Variable-Small-filter-size Residue-
learning CNN (VSRCNN) to increase nonlinearity and

Table 2. : The configuration of VSRCNN

Layer 1 2 a 2 b 3 a 3 b 4
Conv 1/2 3/4 5 6 7 8

Filter Size 3×3 3×3 3×3 3×3 1×1 3×3
Channels 64/64 64/32 16 48 16 64

Block1 Block3Block2 OutputConcate Concate
X1

X2 X3

Input

Fig. 4. : The structure of VSRDCNN

expression ability of the network whose base structure
shares with that of VRCNN in Figure 3. What is mainly
different from VRCNN in the configuration is given in
Table 2.

As shown in Figure 3 and Table 2, we replace the entire
5×5 conv module of VRCNN with two consecutive 3×3
conv modules in VSRCNN. Note that the conv module
includes a convolution layer followed by batch normal-
ization and activation function which is the ReLU. Espe-
cially, we put the ReLU activation function of eighth conv
module behind the skip connection. Meanwhile, it is at-
tractive in practice that we keep shortcut of VRCNN to
prevent gradient vanishing which introduces neither extra
parameter nor computation complexity.

How VSRCNN improves performance of network is
described in detail as follows. Convolutional kernel as
the foundation of convolutional layer can extract different
kinds of feature with various weights. By changing the
size of kernel, we can extract local features of different
size. i.e., the feature learned by 5×5 filter is more global
than that through 3×3 filter, however, by adding another
3×3 filter after the first 3×3 filter we can learn from the
front layer the same feature as that of 5×5 filter. What a
single 5×5 filter learns is equivalent to two stacked 3×3
filters. The advantage of two consecutive 3× 3 convolu-
tional layers is it can enable network to use the activation
function one more time and learn more kinds of feature
which increase the nonlinearity and expression ability.

2.4. The Further Improved VSRDCNN
Based on VSRCNN, we add the depth of the net-

work and redesign a new network called as Variable-
Small-filter-size Residue-learning Dense CNN (VSRD-
CNN).The structure of VSRDCNN contains three blocks
which is exhibited in Figure 4. Each block is composed
of the four layers of VSRCNN. The blocks are linked by
dense connection and a jump connection is added between
the output of each block and the original input.

This paragraph elaborates how VSRDCNN uses resid-
ual connection and its advantage. The output of each
block is added a jump connection with the original input
so that the block learns the residue with a weak differ-
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ence between the output of current block and original in-
put rather than directly learn the identity mapping, which
caters to the problem that the network is difficult to train
with the increase of depth. It is noteworthy that the current
unit combines the features learned by all previous blocks
at the same time. As for adding jump connection, it is easy
to intend the output of current block to be closer to the
original input rather than the input of the current block.

Next, how VSRDCNN uses dense connection [10]and
its advantages are given. The input of each block is the
concatenation of the output of all previous blocks together
with the original input. The feature extracted from each
layer is equivalent to a nonlinear transform of the input
data. With the increase of CNN depth, it gradually fits
more nonlinear functions and the complexity of the trans-
form dramatically grows. Dense connection, further im-
proves the information flow among blocks ensures the
current block can comprehensively utilize the features ex-
tracted from previous blocks with low complexity. In
other words, we combine the shallow features with the
deep features in the current block, which makes it easy
to get a smooth decision function with better generaliza-
tion performance. Compared with learning the shallow
features and deep features of input separately and then
hanging them together, our dense connection effectively
reduces the amount of network parameters.

3. Results and Discussion

In this section, we test our proposed CNNs with
some competing methods over HEVC reference software
HM16.15, downloaded from HEVC official website. We
first outline our experimental setup including dataset and
loss function used in training and validation. Then we
give the using of CNNs in testing. Next, for verifying the
superiority and robustness of our CNNs, we provide the
results generated by all methods on both subjective and
objective criteria. Finally, the comparison of our CNNs
with other CNNs in literature is given.

3.1. Configurations
For dataset, we make pairs of images as training set and

validation set according to DIV2K [11] dataset. An orig-
inal image HRn (High Resolution), where n ∈ {1,...,900}
indexes each image, is compressed with HEVC intra cod-
ing while turning off the in-loop filter. The compressed
image called as LRn (Low Resolution) is regarded as the
input of the network and SRn (Super Resolu-tion) as the
output of CNN. As a result of the limitation of GPU, we
crop HR and LR to 128× 128 sub-images without over-
lapping. In total, we get 95,115 pairs of training samples
which will be randomly shuffled and the mini-batch is 64
when training and 11,910 pairs of validation samples.

For loss function, we minimize the following Mean
Square Error (MSE) as the objective of training:

L(Φ) =
1
N

N

∑
n=1
‖F(LR|Φ)−HR‖2

2 . . . . . (1)

Where F(LR|Φ) is equivalent to SR (Super Resolu-
tion) which is output of the trained CNN, Φ consisting
of Wi,Bi, with i ∈ {1,2,3,4} indicating which layer it rep-
resents is the whole parameter set of CNN, N is the total
pixels of SRn or HRn image. The loss is minimized using
adaptive moment estimation (Adam) [12] as the stochastic
gradient descent optimization algorithm [13].

We use the deep learning library Pytorch on a GeForce
GTX 1080 Ti with CUDA version 11.0 to implement all
operations in our networks. We train four times for each
network at QPs 22, 27, 32 and 37. The momentum is
set to 0.9 and weight decay is 10−4. A network model
with specific parameters at QP 37 is done through 160
epochs setting the learning rate of 10−4. To accelerate the
converge speed, we fine-tune the model at QPs 22, 27, 32
which is initialized with parameters of trained model at
QP 37. This is empirically better than train from scratch.

Note that the trained model of four QPs for our VSR-
CNN and VSRDCNN is based only on the Y luminance
channel (i.e., the Y out of YUV). However, we test it not
only on Y channel but also on chrominance channels (U
and V) using the HEVC standard test sequence to prove
the generalization ability of network. We integrate the
trained model into HEVC reference software HM16.15
by libtorch and OpenCV for intra coding with the orig-
inal DBF and SAO turned off and test it on the HEVC
standard test sequence which contains five classes,18 se-
quences shown in Table 3 and only the first frame is used
as evaluation dataset.

3.2. Subjective Quality Comparison
We compare the visual quality of reconstructed im-

ages as shown in Figure 5 and show the same 64× 64
block in the first frame of BlowingBubbles. It can be ob-
served that the image compressed by HEVC with DBF
and SAO turned off has obvious blocking and ring ar-
tifacts. Through in-loop filter reconstruction of HEVC
coding, the restoration frame of BlowingBubbles at QP
37 greatly reduces the blocking, but ringing is still visi-
ble. The processed frames by VRCNN suppress all kinds
of artifacts and produce a good visual quality. Our de-
signed VSRCNN is better than VRCNN and VSRDCNN
is further better than VSRCNN especially from the left
eyebrow in the dotted box of the girl in Figure 5.

3.3. Objective Quality with HEVC Baseline
In order to objectively measure the performance of the

proposed CNN, three common evaluation criteria are cho-
sen: PSNR, BDpsnr, BDrate.

3.3.1. Objective Evaluation on PSNR
The first index PSNR is a classic estimate for objective

quality between SRn and HRn images. For an 8-bit depth
image, the formula of PSNR is given as follows:

MSE = (
W−1

∑
x=0

H−1

∑
y=0

(SR(x,y)−HR(x,y))2)/(W ×H)

PSNR = 10× log10(2552/MSE)

(2)
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Table 3. : The configuration of the evaluation dataset

Class Resolution Sequence
Class A 2560×1600 PeopleOnStreet, Traffic
Class B 1920×1080 BasketballDrive, BQTerrace, Cactus, Kimon, Park Scene
Class C 832×480 BasketballDrill, BQMall, PartyScene, RaceHorses
Class D 416×240 BasketballPass, BlowingBubbles, BQSquare, RaceHorses
Class E 1280×720 FourPeople, Johnny, KristenAndSara

(a) HR (b) LR (c) HEVC (d) VRCNN (e) VSRCNN (f) VSRDCNN

Fig. 5. : One block in the first frame of BlowingBubbles compressed at QP=37 and reconstructed by HEVC baseline as
well as three CNNs

PSNRYUV = (6×PSNRY +PSNRU +PSNRV )/8(3)

Where W and H are on behalf of the width and height
of the image, respectively. With the YUV format of our
test set which comprises of three components, i.e., Y, U
and V, as the HM16.15 does, we use a weighted sum of the
average PSNR values for luma and chroma components,
which is defined by equation (3) as follows. Where the
PSNRY , PSNRU and PSNRV are calculated by equation
(2) using the individual color component Y, U and V. In a
way, the PSNR reflects the pixel-wise similarity between
HR and SR. Note that we train CNNs on Y channel and
test it on YUV channels to prove the generalization ability
of the networks. The results of HEVC, HEVC off which
turns off the DBF and SAO, VRCNN and the proposed
two networks at QP 37 are recorded in Table 4. Note
that the performance of network at the other three QPs is
similar to that at QP 37. The PSNR of reconstructed im-
ages using VRCNN, VSRCNN, and VSRDCNN are all
higher than that of reconstructed images using in-loop fil-
ter from either the average value of all classes or the av-
erage value of each class. From the view of the average
PSNR of all classes on the YUV channels in Table 4, the
good generalization performance of proposed CNNs can
be seen. The value of HEVC is 0.27dB higher than that
of HEVC off which embodies the effectiveness of DBF
and SAO module, the value of VRCNN is 0.04dB lower
than our VSRCNN owing to its two stacked 3× 3 con-
volutional layers, VSRCNN’s value is 0.09dB lower than
that of VSRDCNN which benefits from dense connection
among blocks.

In addition, we add the experiment to compare the re-
construction effect of the proposed VSRDCNN and the
DBF and SAO of HEVC on different video content. First,
18 frames LR is gotten from encoding above 18 frames
HR evaluation da-taset by HEVC at QP 37 which turns

off the DBF and SAO. Then, we crop the LR frames to
128× 128 blocks and obtain 1314 blocks in total. Next,
we use the edge extraction operator to sum the edge pixel
numbers of each block to get a score, and then sort all
blocks into three groups according to the scores from high
to low. The three groups are high-texture blocks, middle-
texture blocks, and low-texture blocks in which the high-
texture blocks have the greatest number of edge pixels
indicating complicated texture areas, and the low-texture
blocks have the least number of edge pixels indicating flat
areas. The mean ∆PSNR value which equals to the PSNR
of reconstructed blocks by the proposed VSRDCNN mi-
nus the PSNR of reconstructed blocks by default HEVC
coding for the three groups is calculated and shown in Ta-
ble 5. From the result, we can observe that it has the best
restoration effect of 0.33 dB increasing on the middle-
texture blocks. The reason why it has the least effect of
0.18 dB on the high-texture blocks is that the complicated
texture is lost seriously in the HEVC encoding, so it is
hard for reconstruction. As for the low-texture blocks, the
result is 0.11 dB less than that of high-texture blocks, be-
cause it has few textures in flat areas, so the reconstruction
effect is not obvious. Based on the conclusion, adopting
different CNNs for different content videos or blocks may
get more comprehensive restoration results.

3.3.2. Objective Evaluation on BDpsnr and BDrate
For a compressed video, what shows the new method

has better performance is that the Bit Rate decreases as
well as the PSNR increases. However, there will be a situ-
ation where the Bit Rate is lower than the original method,
but the PSNR reduces. In this case, BDrate and BDpsnr
based on four QPs which mentioned in [14] are needed to
measure the quality of the method.

BDpsnr which is used as the second index is the differ-
ence of PSNR values of compressed video between cur-
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Table 4. : The PSNR of different CNNs on YUV channels

Class PSNR yuv (dB)
HEVC HEVC off VRCNN VSRCNN VSRDCNN

Class A 35.097 34.748 35.378 35.422 35.510
Class B 35.368 35.119 35.484 35.501 35.618
Class C 32.301 32.097 32.642 32.683 32.730
Class D 31.922 31.735 32.383 32.436 32.472
Class E 37.566 37.236 37.873 37.920 38.089
Average 34.45 34.18 34.75 34.79 34.88

Table 5. : The mean value of ∆PSNR on three groups of
different video content

high-tex block mid-tex block low-tex block
∆PSNR 0.18 0.33 0.22

rent method and HEVC baseline under the condition of
the same Bit Rate. The larger the BDpsnr is, the smaller
the quality loss of the current method is. The BDpsnr re-
sults of three CNN-combined HEVC coding methods are
shown in Table 6 from which the VSRDCNN’s is 0.02dB
higher than VSRCNN’s on average of five classes, and
VSRCNN’s is 0.06dB higher than VRCNN’s under the
same condition on YUV channels. Those good results
profit from the stacked two small filters of VSRCNN in-
creasing feature representation and nonlinearity of net-
work and the dense connection of VSRDCNN promoting
the unimpeded transmission of information while deepen-
ing the network.

BDrate which is the third criterion in this paper is the
percentage of Bit Rate saving by current coding method
under the same PSNR. BDrate is usually negative. The
smaller absolute value of BDrate is, the better compres-
sion performance of the current encoder is. The BDrate
results are recorded in Table 6 from which we can ob-
serve that the largest absolute value is VSRDCNN’s in
bold of -4.59%, the second largest is VSRCNN’s under-
lined of -4.22% on the YUV channels , meanwhile, VR-
CNN’s mean value of Class B on YUV channels even is
positive. Although we train the model on the Y channel,
it can be generalized to YUV channels. In summary, the
proposed VSRCNN and VSRDCNN enable to achieve Bit
Rate saving step by step thanks to the ingenious design of
CNN.

3.3.3. Computational Complexity Analysis
In this section, the computational complexity which

affects the codec’s real-time performance will be ana-
lyzed.Table 7 shows the average time per frame for each
class video. As can be seen from the table, a video with
higher resolution needs more time to compress. The en-
coding time used by different CNNs is all higher than
that of default HEVC. Note that it requires connection
process of CNN(trained based on Pytorch) and HEVC

codec(HM16.15 completed by c++). In addition to the
prediction of CNN model which takes about 15% of the
entire time, the other 85% is spent in preprocess and
postprocess during connection. Therefore, the time costs
can be reduced by further optimizing the connection.
When comparing among different CNNs, VSRCNN takes
0.21 seconds less than VRCNN which benefits from the
stacked two small filters of VSRCNN. VSRDCNN based
on VSRCNN which contains three blocks deepens the
network depth at the expense of increasing the encoding
time by 0.3 seconds on average compared with VRCNN.
On the whole, the encoding time taken by three CNNs is
similar. However, VSRDCNN is the best and VSRCNN
is the second-best from the view of other performances
such as improving visual quality and reducing bitrate.

3.4. Objective Evaluation Compared with Other
Networks

As mentioned in above context, some restoration CNNs
have been developed to replace in-loop filter for achiev-
ing better coding efficiency, in which RHCNN [4], DR-
CNN [5], CACNN [6] and VRCNN [1] are the latest and
superior networks, so the proposed two CNNs are com-
pared with them in terms of BDrate. Due to the limitation
of results available in the literature, only results of Class
C and Class D are compared in Table 8. The bold number
is the best and the underlined is the second-best in the cur-
rent line. The BDrate of each method is negative, which
indicates that all designed restoration CNNs have better
performance than the in-loop filter module of HEVC. The
performance of the proposed VSRDCNN is superior to
the proposed VSRCNN of 0.3% BDrate saving and the
VSRCNN exceeds all the other methods even can achieve
2.05% BDrate reduction compared with CACNN [6]on
the average of the two Classes in Table 8. It shows that
replacing the 5×5 convolutional layers with two consec-
utive 3× 3 convolutional layers of VSRCNN is benefi-
cial, and further, the stacked three blocks with VSRCNN
through dense connection of VSRDCNN is also success-
ful.

4. Conclusion

In this paper, we present two progressive networks,
namely as VSRCNN and VSRDCNN, to replace the DBF
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Table 6. : The BDpsnr and BDrate of different CNNs on YUV channels

Class BDpsnr yuv(dB) BDrate yuv (%)
VRCNN VSRCNN VSRDCNN VRCNN VSRCNN VSRDCNN

Class A 0.173 0.212 0.229 -3.469 -4.214 -4.550
Class B 0.003 0.039 0.055 0.156 -0.920 -1.421
Class C 0.278 0.331 0.349 -4.807 -5.736 -6.074
Class D 0.364 0.420 0.436 -5.480 -6.281 -6.512
Class E 0.070 0.190 0.201 -1.359 -3.959 -4.406
Average 0.17 0.23 0.25 -2.99 -4.22 -4.59

Table 7. : The encoding time(s) per frame on HEVC and different CNNs with QP=37

Class Resolution HEVC VRCNN VSRCNN VSRDCNN
Class A 2560×1600 19.43 38.06 37.18 38.68
Class B 1920×1080 9.55 18.45 18.42 18.82
Class C 832×480 2.25 4.4 4.34 4.96
Class D 416×240 0.53 1.53 1.46 1.46
Class E 1280×720 4.25 8.45 8.41 8.45

Average 7.20 14.17 13.96 14.47

Table 8. : The comparison with other CNNs on BDrate

RHCNN [4] DRCNN [5] CACNN [6] VRCNN [1] VSRCNN VSRDCNN
Class C -7.10% -3.90% -4.50% -4.80% -5.70% -6.00%
Class D -4.40% -4.60% -3.30% -5.40% -6.20% -6.50%
Average -5.75% -4.25% -3.90% -5.10% -5.95% -6.25%

and SAO module of HEVC for enhancing intra coding
performance. The proposed VSRCNN replaces original
filter in VRCNN with two small filters to improve fea-
ture expression ability. Further, VSRDCNN which takes
VSRCNN as basic unit comprehensively utilizes features
and boosts unimpeded information flow through dense
connection. By testing the proposed CNNs on HEVC
standard video sequences, effectiveness of our network
is proved via extensive experiments on both quantitative
and qualitative evaluation. Compared with HEVC base-
line and other latest reconstruction CNNs, the proposed
VSRDCNN achieves the best performance on both visual
quality and bitrate saving. Our future work is to design
different CNNs for different image blocks according to
their texture, as we found that the proposed VSRDCNN
has different effects for image blocks with high-texture,
middle-texture, and low-texture.
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