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Abstract. Based on the analysis of the principle and 

traditional control strategy of the converter, 

according to the design requirements of the 

converters, the design of the machine-side converter 

and the grid-side converter is introduced in detail. 

The converter control adopts zero DC current 

control and speed outer loop current inner loop 

control mode, and the grid-side converter adopts 

voltage outer loop current inner loop control control 

strategy. It provides a theoretical basis for the 

subsequent establishment of the converter simulation 

model. 

Keywords: Wind Turbine, Direct Drive, Pitch 

Controller, Variable Frequency Control 
 

1.   INTRODUCTION (HEADING 1) 

Permanent magnet direct drive type wind turbine is a 

multi-pole generator directly driven by the wind wheel 

shaft to generate electricity. Compared with doubly-fed 

wind turbine, the transmission chain is simplified, and 

the low-speed shaft, high-speed shaft, coupling and gear 

box are eliminated. , The length of the nacelle is reduced, 

the structure is more compact, and the problem of regular 

replacement of gear box oil and economic losses caused 

by gear box failure is avoided, maintenance costs are 

reduced, and transmission loss of the gear box is reduced. 

It has the advantages of high power generation efficiency. 

In recent years, with the development of mobile robot 

technology, motor control has become the core problem 

[1-10]. The permanent magnet direct drive wind turbine 

control system mainly includes four components: the 

main controller, the pitch controller, the yaw controller, 

and the converter controller [11]. Among them, the 

converter completes the variable-speed and 

constant-frequency control of the generator, ensures the 

quality of power generation and grid connection, and 

achieves the same frequency, amplitude, and phase with 

the grid voltage; when the wind speed is less than the 

rated wind speed and when the blade pitch angle of the 

wind turbine remains the most When hours, the converter 

controls the generator speed and electromagnetic torque 

to maintain the optimal blade tip rotation speed ratio for 

high-speed operation. When the wind speed driving the 

rotation of the wind wheel exceeds the rated power 

generation wind speed, the pitch controller is used to 

limit the power and reduce the power grid. Voltage and 

power fluctuations [12-14]. 

The converter of a large-scale direct-drive wind motor 

is a key component that connects the generator and the 

power grid. It turns the alternating current generated by 

the generator into alternating current that meets the 

power frequency requirements of the power grid and 

controls the speed and torque of the generator at the same 

time, To achieve the power factor adjustment of the 

power generation system and reduce the grid-connected 

harmonic current components [15], so the design of the 

converter control system is the key and difficult point of 

the direct drive wind power technology. 

At present, there are relatively few documents on the 

design technology of direct drive wind power converter 

control system [16], but the main control strategy is only 

the generator-side converter to realize the decoupling 

control of the reactive and active power of the permanent 

magnet synchronous generator. The voltage control of 

the DC side and the grid-connected output are realized by 

the grid-side converter [17]. However, there are also 

some literatures that propose different methods: Ref [18] 

proposes a strategy for connecting energy dissipation 

resistors to the DC bus. In [19] a cross-coupling design 

between the grid-side converter and the machine-side 

converter is proposed. The method of the controller, ref 

[20] proposes a control method using dual PWM full 

power converters and space vector. Ref [21] proposes a 

strategy for coordinated control using AC and DC power 

grids. Ref [22] proposes the use of fixed Voltage control 

method. In [23], a control method using voltage 

frequency is proposed. However, these methods have 

problems such as the instability of the output power of 

the DC grid due to the indirect power supply. Foreign 

research on direct drive wind turbines mainly focuses on 

converter control algorithms, direct drive wind turbine 

converter modeling, and how to improve the ability of 

the converter to ride through faults [24]. 

In response to the above problems, this paper analyzes 

the principle of the converter and traditional control 

strategies, and according to the design requirements of 

the converter, designs the machine-side converter and the 

grid-side converter. The converter control adopts zero 

DC Current control and speed outer loop current inner 
loop control mode, the grid-side converter adopts the 

voltage outer loop current inner loop control strategy, the 
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converter simulation model is established, and the 

Simulink tool of Matlab is used to analyze the direct 

drive wind motor's machine side and The grid-side 

converter is simulated and analyzed. 

2.  DESIGN OF GENERATOR-SIDE CONVERTER 

CONTROLLER  

The generator-side converter of the direct-drive wind 

turbine generator needs to change the alternating current 

output by the permanent magnet generator stator into 

direct current. When the unit is running at the rated wind 

speed, the generator-side converter controls the generator 

speed to achieve the optimal blade tip The speed ratio 

captures the maximum wind energy. 

The maximum torque/current control strategy of the 

machine-side converter is adopted, that is, the zero d-axis 

current control strategy. The current loop adopts PI 

adjustment. In order to achieve the maximum power 

control and capture the maximum wind energy, at the 

rated wind speed, the motor reference speed is calculated 

according to the output power value and wind speed of 

the grid-side converter, and it is compared with the actual 

speed of the generator to obtain the speed error. The 

reference current is obtained by the PI regulator of the 

outer speed loop, and the dq axis voltage is obtained by 

the difference between the reference current and the 

actual current via the PI regulator of the current loop. The 

voltage undergoes coordinate transformation and PWM 

modulation to obtain a specific switching sequence for 

the grid-side switching devices of the converter. The 

output voltage tracking speed control realizes the 

maximum power tracking control, and the d-axis 

reference current of the generator-side converter is kept 

constant at zero. 

If 
RP  is the power generated by the permanent magnet 

generator, after the power is rectified by the 

generator-side converter, the AC output from the stator 

side of the generator becomes DC. The grid-side 

converter adjusts the DC bus voltage value to become 

amplitude, The frequency and phase meet the 

requirements of the power frequency grid to obtain AC 

power. Ip is the power output from the grid-side 

converter to the grid. 

The current I flowing through the capacitor C on the 

DC side is: 

                       

dc
c dc L

dU
i C i i

dt
  

              
The outgoing electric power of the PMW converter on 

the machine side is: 

R dc dcP U i
                  

 
Power absorbed by grid-side converter: 

I dc LP U i
 If 

R IP P , 
dcU is a constant value, and it needs to be 

closed-loop controlled. 

The capacitance does not exceed its upper limit when 

achieving better voltage following: 
*

0.74

r

L

t
C

R


      
In the formula,   is the capacitor charging time,   is the 

equivalent DC load, and   is the relative value of the 

maximum value of the DC voltage dynamic drop. 

 

3. DESIGN OF GRID-SIDE CONVERTER  

Grid-side converter control is based on unit power factor 

control to run the converter and perform reactive power 

compensation in the event of a grid failure. It is also 

necessary to design the LC AC side filter circuit to achieve 

the grid-connected harmonic requirements. In order to 

achieve the DC bus voltage stability goal, the voltage outer 

loop and current inner loop control strategies are adopted 

for dual closed-loop control, and the current inner loop 

requires synchronous grid connection. 

3.1. Control Design of Current Loop 

The grid-side converter is to control the current input 

to the grid-side converter and convert the direct current 

into alternating current that meets the grid-connected 

requirements. Effective and real-time control of the input 

current is the key to improving the efficiency of energy 

flow. 

In the coordinate axis component of the two-phase 

synchronous rotating coordinate system after the dq 

coordinate transformation, the magnitude of the d-axis 

current gdi  and the q-axis current gqi  are determined by 

the magnitude of the d-axis voltage gdu , the axis 

current and the coupled phase voltage. In order to reduce 

the difficulty of its design, Laplace transform is 

performed on the formula. 

According to the symmetry of the d and q -axis 

currents, the design methods of the two current devices 

are the same. Therefore, only the design of the d -axis 

current controller is analyzed here. With 
gdi  as the 

controlled object and 
gdu  as the output of the controller, 

a closed-loop control system can be obtained. Block 

diagram, as shown in Fig. 1 

 
Fig. 1  Block diagram of current inner loop closed 

 loop control motor 

According to the control block diagram of the current 

inner loop in Fig 1, the transfer function can be obtained 

as follows 

                   
  *

gd gd gdu C s i i                           (5)

 
The d-axis current gdi  is jointly determined by the 

(3)

 

(2)

 

(1)

 

(4)
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gdi , the q-axis current gqi  and the grid 

voltage vector d-axis component gde . The decoupling 

control method is used to cancel the coupling term, so 

that it is not affected by gqi  and gde . 

The control equation of the AC side voltage is: 

  *

gd gd gd gq gq gqu C s i i L i e              (6) 

Simplify Fig 1 to get: 

 
Fig. 2  Block diagram of current inner loop control after 

decoupling. 

 
The PI control zero is offset to the pole of the current 

inner loop control. When 
i

L

R
  , the transfer function 

becomes: 

 
 1.5 s 1

iP PWM
oi

i s

K K
W s

R s T



 

The simplified transfer function of the current inner 

loop is a first-order system: 

 
1

s
3 1

ci

s

W
T s




 

The inertial time system is 3 sT , and the frequency 

bandwidth 
bif  of the closed-loop system: 

𝑓𝑏𝑖 =
1

2𝜋(3𝑇𝑠)
=

1

6𝜋𝑇𝑠
=

1

20
𝑓𝑠 

In the formula, 
sf  is the switching frequency of the 

PWM rectifier and it can well suppress the frequency 

noise of the switching device.

 
3.2. Design of voltage outer loop controller 

When designing the voltage outer loop control, it is 

necessary to determine the conversion coefficients from DC 

current 
dci   to AC current 

gdi  and 
gqi  as follows: 

 
3

2
dc gd gd gq gqi S i S i 

 

gdS  and 
gqS  are the components of the switching 

function of the switching device of the grid-side 

converter on the dq axis respectively. When the converter 

is operating at high frequency, it is approximately unit 

power control operation. After stabilization, 0gdi  , the 

relation of the DC and AC d-axis are obtained.: 

3

2
dc gd gdi S i  

Simplified to the maximum gain of the proportional 

link, since the instantaneous power of the grid-side 

converter is: I dc LP U i , the analysis of the voltage 

outer loop control is similar to the design of the gdi  

current inner loop, and the inductor resistance is small, so 

gds  is the representation of Maximum under empty load 

conditions. 

When the switching period and sampling time are very 

small, the voltage outer loop control is shown in Fig.3. 

 

Fig. 3  Combining time constant voltage outer loop control  

block diagram 

 

When designing the voltage outer loop control, it is 

necessary to consider that the system has good immunity. 

After using the classic II system concept for the design, 

the voltage outer loop open loop transfer function is as 

follows: 

 
 

 2

0.75 1

1

uP u

ou

u eu

K s
W s

C s T s









 

The frequency bandwidth
 

of the available voltage 

outer loop is: 

u
u

eu

h
T


  

The cut-off frequency of the voltage outer loop is: 

3

20
c

sT
   

The frequency bandwidth of the voltage outer loop 

control system is:  

 

 

 

 

4. SIMULATION ANALYSIS OF THE GENERATOR-SIDE 

AND GRID-SIDE CONVERTERS OF A DIRECT-DRIVE 

WIND TURBINE 

The model established in the simulink platform is that 

the grid-side converter's DC bus voltage setting is 

maintained at 710V, the output AC current RMS is 220V, 

and it is incorporated into the 110KV grid. The DC link 

capacitance is 4.2MF, the inductance is 0.026Mh, and the 

filter capacitor is 0.0013MF. The switching devices in 

the generator-side and grid-side converters are insulated 

gate bipolar transistors, and phase lockers are used to 

(7)

 

(8)
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obtain the grid voltage frequency and phase for phase 

measurement. 

When the system is running, it can be known that the 

three-phase current waveform sine wave meets the 

design goal. Wind speed changes, the stator q-axis 

current jumps significantly, and the response is good, and 

the d-axis stator current component remains zero. Fig. 4 

is a three-phase stator current waveform diagram. Fig. 5 

is a waveform diagram of the stator three-phase current 

change. At t=1s, the current amplitude changes 

significantly. The three-phase AC output by the grid-side 

converter is basically stable at 50Hz, and the three-phase 

voltage waveform is a symmetrical sine wave. Fig. 6 

shows the voltage amplitude of 318V, which is 

equivalent to 220V, which meets the grid design 

requirements. 

 

Fig. 4  Three-phase stator current waveform diagram 

 

Fig. 5  Waveform diagram of stator three-phase current change 

 

Fig. 6  Grid-side three-phase voltage waveform diagram 

 

5 .Conclusion 

On the basis of explaining the principle and traditional 

control strategy of the converter, according to the design 

requirements of the machine-side and grid-side 

converters, the machine-side converter and the grid-side 

converter are designed in detail, and the machine-side 

converter is controlled. Using zero DC current control 

and speed outer loop current inner loop control, the 

grid-side converter adopts voltage outer loop current 

inner loop control control strategy, and 

MATLAB/Simulink software is used to simulate and 

analyze large-scale direct-drive wind turbines, which 

proves the converter The effectiveness of the controller 

design, and the simulation analysis of the unit under 

complex wind conditions, verify that the design of the 

pitch and variable frequency controller has strong 

adaptability. 
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