
Hexagonal War Chess Bot Using Memorized Search and Greedy strategy

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021)
Beijing, China, Oct.31-Nov.3, 2021

1

Abstract. In this paper, we present a robot program
for a special hexagonal war chess game that can
expand, explore and attack automatically. First, we
introduce the rules and process of the hexagonal war
chess game. Then, we theoretically analyze the
requirements and characteristics of the robot
algorithm on the basis of the rules of the game, and
then implement the robot by memorizing search and
greedy strategy. Through the experiment of
simulating the battle between each other, it is
verified that our robots have strong fighting power
and have high rapidity and accuracy in attacking. To
sum up, the memorized search and greedy strategy
are practical and effective to improve the aggression
of the robot in this game.

Keywords: Memorized search, Greedy strategy,
Breadth-first search, Robots

1. INTRODUCTION
The design of intelligent robots for strategy games is a
complex problem [1]. Some games have a fixed state so
it is appropriate to use a computer to pre-process a large
number of future board states. Some games are more
random and have more complex states, making it
difficult to make decisions by enumerating states. One
solution is to use informed search. There have been
some previous researches [2–10] on the informed search
already. The value of this strategy is that it reduces
complexity by directing the search in the most
promising direction. In this paper, memory search and
greedy strategy are applied to improve the attacking
efficiency of the robot in the game.

Greedy strategy is a technique for solving some optimal
problems quickly. It has spawned a variety of
algorithms [11-13]. Its characteristic is to proceed step
by step, based on the current state, make the optimal
choice according to a certain optimization condition,
without considering all possible overall situation. This
saves a lot of time that would have been spent
enumerating all the possibilities. The greedy strategy
uses the top-down method to make successive greedy

choices, and each time the choice is made, the problem
is reduced to a smaller subproblem. Through greedy
selection at each step, an optimal solution of the
problem can be obtained. Although each step is
intended to ensure that can obtain the local optimal
solution, but sometimes the resulting global solutions
are not necessarily optimal. In the game in question,
greedy strategy can achieve better results with less
computation.

Several major contributions of this paper can be
highlighted as follows:
1．This paper briefly introduces the rules of hexagonal
war chess and makes a theoretical analysis of winning
ideas. The basic abilities required by a winning robot
and the basic strategies to be followed are summarized.

2．According to the above requirements, the
corresponding robot will be programmed to achieve. We
optimize for a variety of special situations, so that the
robot can efficiently expand, explore and attack.
Through the use of memorized search and greedy
strategy, the robot has a high efficiency when attacking.

3. Demonstrating the validity of this robot algorithm
in aggressive behavior by simulating battle between
robots with different logics.

The rest of the paper is organized as follows. Section 2
introduces the basic rules of hexagonal general chess
game. In Section 3, we make a theoretical analysis of
the winning ideas based on the rules of the game, and
summarize the abilities and strategies that the robot
needs to have. In Section 4, according to the theoretical
analysis above, we implement the robot program, and
use memorized search and greedy strategy to improve
the aggression of the robot. The effectiveness of the
results is verified by comparing with the simulated
battle between ordinary robots. Section 5 gives a brief
conclusion and summary of the results.

2. RULES OF THE HEXAGONAL WAR CHESS

Songqiang Xu1, Hongbin Ma*2,Weipu Zhang3

1School of Information and Electronics, Beijing Institute of Technology, Beijing, 10008

E-mail: 1120190856@bit.edu.cn
*2 School of Automation, Beijing Institute of Technology, Beijing, 10008

E-mail: mathmhb@bit.edu.cn
3School of Xuteli, Beijing Institute of Technology, Beijing, 10008

E-mail: 1120191516@bit.edu.cn

Hexagonal War Chess Bot Using Memorized Search
and Greedy strategy

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021)
Beijing, China, Oct.31-Nov.3, 2021

2

The hexagonal war chess is a real time strategy game
with war chess elements. In the game, you need to
control your army to occupy land, occupy cities, build
up forces and defeat all enemies, and when there is only
one player left, that player wins.

2.1. Map introduction
The map of the game is a random honeycomb map
composed of countless hexagonal grids. Each hexagon
represents a region (Fig.1).
These hexagonal regions can be divided into four
different types, which are (Fig.2-5):
1. BLANK:
The most basic type. It is initially owned by no player
and has a force of 0. When a player moves to an area of
this type, the area automatically belongs to that player
and increases by 1 force every 25 seconds.
2. HILL:
Type of area that cannot be passed or occupied by any
player.
3. FORT:
It is initially not owned by any player, has a certain
number of troops, but does not increase. When occupied
by the player, it belongs to the player and increases the
number of troops by 1 per second. The map is now
shown as a HILL type when not detected by the player.
4. KING:
The player's starting point. Each player has only one
KING, which increases by 1 per second. When occupied
by another player, the area type is changed to FORT, the
occupied player loses, and all areas and forces occupied
belong to the attacker. When only one player's KING is
left on the map, that player wins the game.

2.2. Game features

2.2.1. Forces growth
The number of troops in a player's territory on the map
increases over time, with different types of territory
growing at different rates. - All KING's and occupied
FORT's forces increase by 1 per second; All BLANK
forces occupied by the player increase by 1 every 25
seconds.

2.2.2. Movement and attack
When a player moves troops from an area (the source area)
to an adjacent area that is not his or her own (the target
area), as long as the target area is not of type HILL, it

automatically attacks. If the force in the source area is
greater than the force in the target area, the target area
belongs to the player in the source area. Otherwise, the
force in the target area is not changed and the force in the
target area is reduced to (target area force - Source area
force +1). The source area retains 1 force regardless of
whether the force in the source area is changed or not.

When a player moves troops from one area (the source
area) to an adjacent area that is his or her own (the target
area), the source area force becomes 1 and the target area
force becomes (the target area force + the source area force
-1).

Players can only do one action per second on their
territory.

2.2.3. Visible area
In the game map, players get a view of the area they
occupy and six adjacent areas, and can learn the types,
affiliations and forces of these areas; Other areas are
considered to have no field of view and become darker in
color, the player can't get their ownership and troops,
KING areas are shown as BLANK, FORT areas are shown
as HILL, and only when the field of view is obtained will
they appear as FORT and KING on the player's map.

2.2.4. Victory and defeat
When a player's KING is occupied by another player, the
occupied player is forfeited, and the KING is converted to
a FORT and belongs to the occupier, along with the
BLANK and FORT areas previously owned. When there is
only one player left on the map, that player wins the game.

3. ANALYSIS OF GAME STRATEGY AND
ROBOT DESIGN REQUIREMENTS
3.1. Basic principles of optimization strategy
From the rules of the game, we can easily conclude the
basic principles that the optimal game strategy must follow.
In order to win the game as much as possible, we must
follow the following principles. These principles are
obvious and therefore their derivation will not be discussed
in this paper.
Principle 1 Occupy as much of the FORT as you can, in
order to get rapid replenishment.
Principle 2 Occupy as much of the BLANK as you can, in
order to get slow replenishment.
Principle 3 Plan the path of troop movement so that the
number of steps required to achieve the same result is
minimal.

Fig. 1: The map

Fig. 2: BLANK area Fig. 3: HILL area

Fig. 4: FORT area Fig. 5: KING area

Hexagonal War Chess Bot Using Memorized Search and Greedy strategy

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021)
Beijing, China, Oct.31-Nov.3, 2021

3

3.2. The logic of the ideal robot
Based on the above basic principles, we can design a
general logic of action for the ideal robot. Note that the
action logic at this point is still non-specific and will be
added in detail later.
Step 1 Expand the army from the KING area to the
surrounding areas, increasing the size of territory.
Step 2 Occupy as much of the FORT as it can, and get
enough troops for itself.
Step 3 Mobilize troops to attack enemy's territory,
looking for the enemy's KING area.
Step 4 Occupy enemy's KING area.

3.3. Core algorithm for moving troops
The essence of this game is the movement of troops,
whether it is expansion, exploration, defense or attack,
all involve the movement of troops. Therefore, how to
quickly move enough troops to the designated position
is one of the important problems that the robot needs to
solve. To discuss this problem, we use three adjacent
hexagonal regions as examples (Fig. 6).
Consider three contiguous regions, A, B, and C, from
left to right. They have forces X1, X2, and X3. Now we
want to move both A and B's forces to C.

At this point, we have two ways to move our forces.
One is to move A's force to C first, and the other is to
move B's force to C first.

Calculate the number of steps required for each method:

A move first:

A→B B→C
2 steps

B move first:
B→C
A→B B→C
3 steps

Obviously, it takes fewer steps to move A first, because
the path to move A includes the path to move B. So, in a
real game, we need to take advantage of this inclusion
relationship between paths. Move the forces farther
away first.

To achieve this, we use the breadth-first search method
(We will refer to it as BFS for short). BFS was invented
in the late 1950s by E. F. Moore [14], and discovered

independently by C. Y. Lee as a wire routing algorithm
[15 16]. By taking the target location of carrying troops
as the root node and carrying out the BFS, the adjacent
areas can be searched in the order from near to far.
When we refer to BFS later, we actually build a binary
tree based on the results of the search to record the path
from the child node to the parent node.

3.4. The application of memorized search and
greedy strategy
In order to effectively win the game, robots should have
efficient and accurate attack modules. Make sure to find
the enemy's KING area as soon as possible and avoid
pointless exploration in enemy territory. Therefore, we
used memorized search and greedy strategy in the
attacking part of the robot.

First, let's introduce a new parameter, regional
potential, which is defined as the number of
inaccessible views in the six adjacent regions of a
certain region. The higher this number, the larger the
field of view that can be added after occupying the area,
and the easier it is to find the enemy KING area. Let's
take the following state as an example (Fig.7).

The blue area in the picture is our territory, and the
green area is the enemy's territory. According to the
rules of the game, HILL is an obstacle that does not
belong to any player, and the gray area marked with a
question mark is an unknown area that we cannot see at
the moment. By definition we can figure out that A and
B 's regional potential is 1, C and D 's regional
potential is 3. Therefore, we believe that C and D are
more suitable targets for attack. In theory, occupying C
and D makes more of the area visible, thus increasing
the chance of finding the enemy's KING. From the
human experience of playing these kinds of games, we
also tend to explore in the middle. Therefore, this
strategy is consistent with the actual needs.

The specific content of our greedy strategy is that before
each operation, all enemy territory in the field of vision
is counted, the regional potential of each territory is
calculated, and the territory with the highest regional
potential is selected as the target of attack. With this
algorithm, our robot can quickly find the enemy KING
area, and occupy less non-king areas, reducing the loss

Fig. 6: Three adjacent hexagonal areas.

Fig. 7: An example of an attack scene.

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021)
Beijing, China, Oct.31-Nov.3, 2021

4

of troops.

The specific content of our memorized search is that
after each occupation of a territory, the coordinates of
that territory are marked to indicate that it has been
occupied. When choosing targets, we will compare the
regional potential of each enemy's territory and
determine whether they have already been occupied. If
the enemy territory has been occupied by us before,
lower the priority of the area and attack the unoccupied
area first. The purpose of using memorized search is
that the enemy's territory we once occupied may be
taken away by the other side. But our ultimate goal is to
find the KING of the opposing team, so next time we
attack the unoccpied area first.

4. PROGRAM IMPLEMENTATION
4.1. Implementation of main functions

4.1.1. Expansion of territory
The purpose of territory expansion is to increase the area
of BLANK areas and the number of FORT areas. Among
them, it is more important to increase the number of FORT
areas. Therefore, we rejudge whether there are any FORT
that can be occupied in the field of vision in each turn. If
there are, we will try to occupy the FORT; otherwise, we
will try to occupy the BLANK.

In the operation of FORT occupation, we need to move a
sufficient number of troops from nearby territories to the
FORT area. In order to improve the speed of occupation,
we adopt the breadth-first search order when mobilizing
troops, and make traversal with target FORT as the root
node, and accumulate the available forces in our territory
along the traversal process. The traversal stops when the

accumulated forces exceed the FORT forces. Finally,
according to the traversal order, the forces in each region
are moved to its parent node to realize the occupation of
FORT.

When executing the operation to occupy BLANK, the
expansion method is different than when occupying the
FORT area. We choose the area with the highest military
force in our territory, take this area as the root node to
conduct a width-first search around, find the BLANK area
nearest to this area, and record the path to this area.
Moving troops along this path makes the overall force
spread around more evenly, making the territory area
rapidly larger.

4.1.2. Gather the army
In order to improve the effectiveness of attack, we
divide the whole process of attack into two parts:
gather and attack. Gather means to concentrate a large
number of troops in one area of our territory, attack
means to move the forces in that area towards the
enemy territory. Only the implementation of gather is
discussed in this section. The steps for gather are as
follows:
Step 1 Choose one of our territories as a place to gather
forces (troop location).
Step 2 Calculate our total forces, and set 80% of our
forces as a target for gathering army (target forces).
Step 3 Take the troop location as the root node to
conduct a BFS of our territory, and accumulate the
territory forces traversed. The traversal stops when the
accumulated force exceeds the target forces.
Step 4 Start with the node at the end of the queue. Move
its forces toward its parent node.
Step 5 Determine whether the force at the troop
location has reached the target forces. If so, enter the
attack mode. If not, go back to step 1

4.1.3. Attack mode
This section describes the attack mode after a
successful gather mode. The steps of the attack are as
follows:
Step 1 Choose an enemy territory in view as the target
of attack (attack target).
Step 2 With the attack target as the root node, make a
BFS of our territory, stopping when it has traversed the
troop location.
Step 3 Move the forces from troop location to its parent
node and use the coordinates of the parent node as the
new troop location.
Step 4 Determine if the forces of troop location are
greater than 1. If so, proceed to the next round. If not, it
is considered that the forces are exhausted and the next
turn will be in gather mode.

5. SIMULATION RESULTS OF THE ROBOT
To test the effectiveness of our robot, we put our robot
in simulated battles with robots that didn't use this
algorithm. We arranged three groups of tests, pitting

Fig. 8: Flowchart of expansion behavior.

Hexagonal War Chess Bot Using Memorized Search and Greedy strategy

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021)
Beijing, China, Oct.31-Nov.3, 2021

5

normal robot against normal robot, our robot against our

robot, and our robot against normal robot. Play 100
battles per team. 100 randomly generated maps will be
used in the battle. Each battle record records the number
of moves used in the game and battles won or lost. The
statistical results are shown in Tab.1
To further validate our design, we observed three games
with the same map from three sets of tests.

Test 1 Normal robot against normal robot
Compare the difference between the two images of the
blue side. Its attack pattern is to cover large areas of
enemy's territory. It's not targeted. The total number of
steps in this game is 1,416, which is relatively long. The
results show that the normal robot attack speed is not
sharp enough, often get into a stalemate, it takes a long
time to determine the winner.
Test 2 Our robot against our robot
Compare the difference between the two images of the
blue side. Its attack pattern is a serpentine exploration of
enemy's territory. But there is no enemy's territory out
of sight. The total number of steps in the game is 807,
and the duration is relatively short. The results show
that our robots are highly aggressive, and in a two-game
war, one will soon be overrun by the other.
Test 3 Our robot against normal robot
Compare the differences between the two images and
attacking patterns of the blue and green teams. You can
see that the blue team (normal robot) is still covering
enemy's territory, and the green team (our robot) is
snake exploring enemy's territory. In the end our robot
won. The total number of steps in this game is 1102.
The results show that our robot can quickly and
accurately attack enemy's territory.

Fig. 10: Beginning of the battle.

(Normal bot v. normal bot)

Fig. 11: Middle of the battle.

(Normal bot v. normal bot)

Fig. 12: Beginning of the battle.

(Our bot v. our bot)

Fig. 13: Middle of the battle.

(Our bot v. our bot)

Tab. 1: Simulation results.
(Green team means our bot in the third group)

 Normal bot v.
normal bot

Our bot v.
our bot

Our bot v.
normal bot

Green team
win rate

0.68 0.41 0.93

Blue team
win rate

0.32 0.59 0.07

Average
steps

1376.23 634.17 968.72

Fig. 14: Beginning of the battle.

(Our bot v. normal bot)

Fig. 15: Middle of the battle.

(Our bot v. normal bot)

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021)
Beijing, China, Oct.31-Nov.3, 2021

6

6. CONCLUSIONS AND FUTURE WORK
In order to design the robot program that can have
efficient attack ability in hexagonal war chess. We first
made a theoretical analysis of the rules of the game.
Summarize the basic principles that must be followed to
win the game according to the rules of the game. Then
we designed the general behavior structure of the robot
according to the basic principles. In the implementation
of the program, we encountered some difficult problems.
So we use the memorized search and greedy strategy to
solve the robot attack inefficient, stationary and other
problems. Then, the algorithm was optimized to solve
the problem of chaotic behavior of the robot after the
territory was divided and the problem that the robot did
not attack immediately after finding the enemy's KING
area. Finally, the effectiveness of the robot program is
verified by simulation battle.

Of course, there are still some problems with our robots.
Because of the greedy strategy, although the
computational efficiency and local optimality are
guaranteed, the global optimality cannot be guaranteed.
This paper only studies how to improve the attacking
efficiency of the robot. Expanding and defending
effectively is one of the challenging issues for the future.
Besides, intelligent battle gaming pragmatics with belief
network trees, which was raised by C. G. Looney [17 18]
might be more effective in solving the decision
problems of complex games since this algorithm can
make move decisions based on the incomplete and
uncertain model.

REFERENCES:
[1] C. Tang, Z. Wang, X. Sima and L. Zhang, "Research on Artificial

Intelligence Algorithm and Its Application in Games," 2020 2nd
International Conference on Artificial Intelligence and Advanced
Manufacture (AIAM), 2020, pp. 386-389.

[2] P. E. Hart, N. J. Nilsson and B. Raphael, "A Formal Basis for the
Heuristic Determination of Minimum Cost Paths," in IEEE
Transactions on Systems Science and Cybernetics, vol. 4, no. 2, pp.
100-107, July 1968.

[3] T. Joppen, M. U. Moneke, N. Schröder, C. Wirth and J. Fürnkranz,
"Informed Hybrid Game Tree Search for General Video Game
Playing," in IEEE Transactions on Games, vol. 10, no. 1, pp. 78-90,
March 2018.

[4] A. K. Mishra and P. C. Siddalingaswamy, "Analysis of tree based
search techniques for solving 8-puzzle problem," 2017 Innovations
in Power and Advanced Computing Technologies (i-PACT), 2017,
pp. 1-5.

[5] M. Neshat, "A Hybrid Method in Informed Search: Fuzzy
Simplified Memory-Bounded A* Approach," 2010 International
Conference on Computational Intelligence and Communication
Networks, 2010, pp. 105-109.

[6] C. B. Browne, "A survey of Monte Carlo tree search methods",
IEEE Trans. Comput. Intell. AI Games, vol. 4, no. 1, pp. 1-43, Mar.
2012.

[7] M. P. Strub and J. D. Gammell, "Adaptively Informed Trees (AIT*):
Fast Asymptotically Optimal Path Planning through Adaptive
Heuristics," 2020 IEEE International Conference on Robotics and
Automation (ICRA), 2020, pp. 3191-3198.

[8] A. P. Gerdelan and N. H. Reyes, "Synthesizing Adaptive
Navigational Robot Behaviors using a Hybrid Fuzzy A* Approach"
in Advances in Soft Computing: Computational Intelligence:
Theory and Applications, Berlin & Heidelberg:Springer, pp.
699-710, 2006.

[9] S. Koenig and M. Likhachev, "Adaptive A*", Proceedings of the
International Converence on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 1311-1312, 2005.

[10] J. D. Gammell, S. S. Srinivasa and T. D. Barfoot, "Batch Informed
Trees (BIT*): Sampling-based optimal planning via the heuristically
guided search of implicit random geometric graphs," 2015 IEEE
International Conference on Robotics and Automation (ICRA),
2015, pp. 3067-3074.

[11] Tan Shan Yan, "Greedy algorithm based on Hybrid Genetic
Algorithm for Solv¬ing 0 / 1 knapsack poblem", Research and
Development, vol. 7, 2006.

[12] K. Wang, W. Shang, M. Liu, W. Lin and H. Fu, "A Greedy and
Genetic Fusion Algorithm for Solving Course Timetabling
Problem," 2018 IEEE/ACIS 17th International Conference on
Computer and Information Science (ICIS), 2018, pp. 344-349.

[13] Murat Kalender et al., "A greedy gradient-simulated annealing
hyper-heuristic for a curriculum-based course timetabling
problem", 12th UK Workshop on Computational Intelligence
(UKCI), 2012.

[14] C. E. Leiserson and Tao B Schardl, "A Work-Efficient Parallel
Breadth-First Search Algorithm (or How to Cope with the
Nondeterminism of Reducers)", ACM Symp. on Parallelism in
Algorithms and Architectures, 2010.

[15] C. Y. Lee, "An Algorithm for Path Connections and Its
Applications", IRE Transactions on Electronic Computers, 1961.

[16] S. Russel and P. Norvig, "Artificial Intelligence: A Modern
Approach (2nd ed.)", Prentice Hall, 2003.

[17] C. G. Looney, "Intelligent Battle Gaming Pragmatics with Belief
Network Trees," 2006 IEEE Symposium on Computational
Intelligence and Games, 2006, pp. 243-248.

[18] C. G. Looney and L. R. Liang, "Cognitive situation and threat
assessments of ground battlespaces", Info. Fusion, vol. 4, pp.
297-308, 2003.

