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Abstract. A visual-inertial system (VINS) based on vi-
sion sensor is vulnerable to environment illumination
and texture, the problem of initial scale ambiguity still
exists in a monocular VINS system. The fusion of a
monocular camera and an inertial measurement unit
(IMU) can effectively solve the scale blur problem, im-
prove the robustness of the system, and obtain higher
positioning accuracy. Based on a monocular visual in-
ertial navigation system (VINS-mono), a state-of-the-
art fusion performance of monocular vision and IMU,
an initialization scheme is designed which can calcu-
late the acceleration bias as a variable during the ini-
tialization process so that it can be applied to low-cost
IMU sensors. The experimental result on the EuRoc
dataset shows that the initial values obtained through
the initialization process can be efficiently used for
launching nonlinear visual-inertial state estimator and
positioning accuracy of the improved VINS-mono has
been improved by about 8% than VINS-mono.
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1. Introduction

With the innovations of sensors and algorithms [1], mo-
bile robots are getting smaller and smarter and are ad-
dressing new applications in medicine, agriculture, and
security applications [2,3]. Simultaneous Localization
and Mapping (SLAM) has always been a research hotspot
of the robot navigation for many decades.

However, in the navigation process, only relying on the
monocular camera information to locate the mobile robot,
there is a scale ambiguity problem, which leads to the fail-
ure to obtain the real trajectory length. This is the scale
ambiguity problem in monocular SLAM, which limits its
wide application. RGB-D camera can obtain color image
and depth image at the same time, but its measurement
distance is limited and contains too much noise [4]. A
two-dimensional laser scanner is widely used in indoor
positioning, but it contains too little information to per-
form complex tasks. Three-dimensional laser scanners
are not widely used because of its high price. In order
to solve this problem, more and more solutions tend to
use the sensor fusion method, making use of the different

characteristics of data acquired by sensors to complement
each sensor’s advantages and achieve better results [5,6].
In different sensor modes, the combination of a monocu-
lar camera and an IMU has good robustness and low-cost
characteristic, so this combination is a potential solution.

The main advantage of this monocular visual-inertial
navigation system (VINS) is to have the metric scale, as
well as roll and pitch angles, all observable. This enables
navigation tasks that require metric state estimates. In ad-
dition, the integration of IMU measurements can dramat-
ically improve motion tracking performance by bridging
the gap between losses of visual tracks due to illumina-
tion change, texture-less area, or motion blur. In fact,
the monocular VINS is not only widely used in mobile
robots, drones, and mobile devices, it is also the mini-
mum sensor setup for sufficient self and environmental
perception. The representative work of VINS scheme in-
clude ROVIO[7], KOVIS[8], VINS-mono[9] and VINS-
fusion[10].

Based on a monocular visual-inertial navigation sys-
tem (VINS-mono), a state-of-the-art fusion performance
of monocular vision and IMU, this paper designs a new
initialization scheme that can calculate the acceleration
bias as a variable during the initialization process so that
it can be applied to low-cost IMU sensors. Through ex-
periment and analysis in the EuRoc dataset, the result
shows that the initial values obtained through this process
can efficiently be used to launch nonlinear visual-inertial
state estimator and positioning accuracy of the improved
VINS-mono has been improved by about 8% than VINS-
mono.

The rest of this study is organized as follows. The im-
proved VINS-mono system overall framework is given in
Section 2. Then, the initialization process of the improved
VINS-mono is described in Section 3. The experiment re-
sult and analysis are shown in Section 4. Finally, a con-
clusion is drawn in Section 5.

2. System Overall Framework

Monocular VINS and visual SLAM are essentially state
estimation problems. Based on the VINS-mono project,
the IMU and camera data are tightly coupled by nonlin-
ear optimization method. The function module of the
improved VINS-mono includes five parts: data prepro-
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Fig. 1. The improved visual-inertial navigation system architecture framework.

cessing, initialization, back-end nonlinear optimization,
Closed-loop Detection and closed-loop optimization. The
code mainly opens four threads, including front-end im-
age matching, back-end nonlinear optimization, Closed-
loop Detection and closed-loop optimization. The overall
framework of the improved VINS-mono system is shown
in Figure 1, in which the red solid line represents the im-
proved part compared with VINS-mono. The main func-
tions of each functional module are as follows.

(1) Image and IMU preprocessing. Pyramid represen-
tation is used to process the image. The feature points
of the sphere are extracted from each layer of the image.
The feature point method is used to match the adjacent
frames. Outliers were removed by random sample consis-
tency (RANSAC) [11]. Finally, the tracking feature points
are pushed to the image queue, and a notification is sent
to the back end for processing. The position, velocity and
rotation (PVQ) of the current time are obtained by inte-
grating IMU data, and the pre-integration increment, Ja-
cobian matrix of adjacent frames and the covariance term
of pre-integration error for back-end optimization are cal-
culated.

(2) Initialization. Structure from Motion (SfM) [12] is
used for pure visual estimation of pose and 3D position of
all keyframes in sliding window. Then, the initial param-
eters are calculated with IMU pre integration results.

(3) Local visual-inertial bundle adjustment with relo-
calization. The visual constraint, IMU constraint and
closed-loop constraint are transformed into a large objec-
tive function for nonlinear optimization to solve the ve-
locity, position, attitude and deviation of all frames in the
sliding window.

(4) Closed-loop detection and optimization. Open

source dictionary package (DBoW3) is used for closed-
loop detection. When the detection is successful, the
whole camera trajectory is closed-loop optimized.

3. The Initialization Process of the Improved
VINS-mono

VINS-mono does not initialize acceleration bias ba
which simply sets its initial value to zero, which is not
applicable to low-cost IMU. The initialization result di-
rectly affects the robustness and positioning accuracy of
the entire tightly coupled system.

In this paper, a new initialization scheme is designed,
which can calculate the acceleration bias ba during the
initialization process so that it can be applied to low-cost
IMU sensors. Besides, the ORB feature point method is
used instead of optical flow method to make the initializa-
tion model more accurate and robust during the initializa-
tion process.

The VINS-mono visual processing uses the optical flow
tracking method. The accuracy of the pose solved by the
optical flow tracking is not as good as the feature point
matching, which has a great influence on the accuracy of
the initialization and is directly related to the accuracy of
the subsequent motion estimation. In order to improve
this situation, in this paper, the ORB feature point method
is used for pose estimation in the initialization phase. The
procedure of the initialization is shown in Figure 2.

3.1. Visual SfM
The visual initialization uses the key frames image se-

quences in the initial time about 10 s to perform the pose
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Fig. 2. Procedure of initializing of the improved VINS-mono.

calculation and triangulation as well as further global op-
timization. The selection of the image key frame is mainly
based on the distance of the parallax, and when the par-
allax distance is greater than a certain threshold, it is se-
lected as a key frame. The vision based SFM technique is
used to obtain the more accurate pose and image point co-
ordinates of the key frame sequence. This provides more
accurate pose parameters for IMU initialization. In order
to make the visual initialization independent of the scene,
that is, to determine whether the initial scene is flat or non-
planar, a relatively accurate initial value can be obtained.
The two initial key frames images of the system adopt a
parallel computing fundamental matrix and a homogra-
phy matrix method and choose the right model according
to a specific mechanism. The scene scale is fixed, and the
triangle points are initialized according to the initial two
key frames, then the Perspective-n-Point (PnP) algorithm
is used to restore motion and continuously triangulate to
restore the map point coordinates. After tracking a se-
quence, a Bundle Adjustment (BA) is constructed based
on the projection error of the image coordinates for global
optimization, and the optimized map points and poses are
obtained, as shown in Figure 3.

3.2. Visual-inertial Alignment
The purpose of visual-inertial alignment is to use the

results of the visual SfM to decouple the IMU and calcu-
late its initial values separately. The initialization process
can be decomposed into four small problems in order to
solve:

(1) Estimation of the gyroscope bias.
(2) Estimation of the scale and the gravitational accel-

eration.
(3) Estimation of the acceleration bias and the opti-

mization of the scale and gravity.
(4) Speed estimation.
In order to describe the movement of the rigid body

in three-dimensional space and the positional relationship
between the camera and the IMU sensor mounted on the
rigid body, the positional transformation relationship is
defined as shown in Figure 4. The IMU coordinate system
and the rigid body coordinate system (body) are defined
as coinciding. TBC represents the transformation of the co-
ordinates in the camera coordinates to the IMU coordinate
system, and it is composed of RBC. TWB denotes the trans-
formation relationship between the rigid body coordinate
system and the world coordinate system ( RWB denotes
the rotating part, and WP denotes the translation part). Pl
and Zl represent world coordinates and image plane coor-
dinates, respectively.

3.3. Gyro Bias Estimation
The bias of the gyroscope can be decoupled from the

result of the rotation calculated by the visual SfM and the
result of the IMU pre-integration. During the initializa-
tion process, it can be assumed that bg is a constant and
does not change over time. Throughout the initialization
process, the rotation of the adjacent key frames can be
solved by the visual SfM. The rotation between adjacent
frames can also be obtained by the pre-integration of the
IMU. Assuming that the rotation matrix obtained by vi-
sual SfM is accurate, the value of bg can be calculated
indirectly using the difference between the two rotation
matrices corresponding to Lie algebra. The exponential
map (at the identity) Exp: so(3)→SO(3) associates an el-
ement of the Lie Algebra to a rotation and coincides with
the standard matrix exponential (Rodrigues’ formula).

The calculation formula is as follows:

argmin
bg

n−1

∑
i=0

∥∥∥Log
((

Ri+1
BW Ri

WB
)T4Ri,i+1Exp

(
Jg
4Rbg

))∥∥∥
(1)

where the Jacobians Jg
4R account for a first-order ap-

proximation of the effect of changing the gyroscope bi-
ases without explicitly recomputing the pre-integrations.
Both pre-integrations and Jacobians can be efficiently
computed iteratively as IMU measurements arrive [13].
The above formula R(·)

WB =R(·)
WCRCB, n represents the num-

ber of key frames, and 4Ri,i+1 represents the integral
value of the gyroscope between two adjacent key frames.
The superscript i represents the time of the key frame.
R(·)

WCcan be obtained with visual SfM, and RCB is the ro-
tation matrix of the IMU coordinate system in the camera
coordinate system. Formula (1) can be solved with the
Levenberg–Marquard algorithm based on nonlinear opti-
mization, which is more robust than the Gauss–Newton
method, and the value of bg can be decoupled.
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Fig. 3. Visual Structure from Motion (SfM) flowchart.

Fig. 4. Conversion relations of different coordinate systems.

4. Experimental Result

Running our improved VINS-mono system on the Eu-
Roc dataset, the result are shown in the figure 5. The pur-
pose of a test is to test the convergence of system variables
during initialization. The green line represents the run-
ning track and the red line represents the result of loop de-
tection. In about 10 seconds, the deviation of accelerom-
eter and angular velocity sensor with IMU converge to a
stable value, while the scale estimation is close to the opti-
mal value. Through the similarity transformation between
the attitude estimation and the real attitude, the optimal
value is obtained. After 10s, the condition number de-
creases significantly and converges, which indicates that
the system converges faster. Since the dataset contained
the real track coordinates, the accuracy of the track in the
modified system could be worked out by the calculation of
an error between the estimated trajectory and the real tra-
jectory. According to Figure 6, the trajectory result error
was small, and the cumulative error was properly elimi-
nated when dataset were running in the system. This was
because the speed of collecting data with the drone was
slow enough for the system to detect in a closed loop and
hence to make a holistic optimization.

The overall error of the improved VINS-mono system
is 0.068m, and the calibration error is 0.079%, which is
about 8% higher than that of VINS-mono. The results
show that the new initialization method can effectively
solve the variable initialization problem of VINS system
composed of low-cost sensors.

Fig. 5. The improved VINS-mono system running on the
EuRoc dataset

Fig. 6. The graph describes the trajectory error change of
the improved system over time in dataset testing

5. Conclusions

A new initialization scheme is designed which can cal-
culate the acceleration bias as a variable during the ini-
tialization process so that it can be applied to low-cost
IMU sensors. The results show that the improved VINS-
mono scheme completes the entire initialization process
within approximately 10 seconds can efficiently facilitate
initialization with low-cost sensors. Due to the stricter
initialization scheme to avoid the result from falling into
the local minimum, the positioning accuracy is also im-
proved.

The improved VINS-mono scheme still uses bag-of-
word for loopback detection, but it can easily cause false
results for loopback detection especially in an indoor en-
vironment that has many similar scenes. Therefore, fur-
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ther improvement of the robustness of the system loop
detection is needed. Besides, this scheme can generate
sparse point clouds information and it is necessary to gen-
erate dense 3D point clouds information of environment
based on the video stream captured by camera real-time
in the next work. In addition, it is necessary to fuse more
sensor information to improve the positioning accuracy
and robustness further in the next step.
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