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Abstract. Macroscopic traffic flow forms show heavily
similarity between days, so this paper uses past datas
to train a neural network for fitting the MFD system.
This paper presents a framework for combining neu-
ral network with generalized predictive control. First,
a region traffic network model is identified by the neu-
ral network which can approximate any nonlinear sys-
tem. Second, the MFD system is transformed into
linear system because of linearizing neural network
models at each operation point. Third, the optimal
perimeter control of the two regions is achieved by the
generalized predictive control method with the instan-
taneous linearization model. Simulation results show
that the proposed frame significantly alleviates conges-
tion in the network and reduces the total travel time
spend in the traffic network.

Keywords: Macroscopic fundamental diagrams, Neural
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1. Introduction

Urban traffic congestion is a challenging problem. Au-
tomatic control method has been an effect way to solve the
problem. Some signal control strategies have widely used
such as SCOQT (split cycle offset optimizing technique)
[1] and SCATS (sydney coordinated adaptive traffic sys-
tem) [2] in single point control and trunk line control and
they have achieved good results. However, those con-
trol strategies are less efficient under oversaturated traffic
conditions. Traffic control issues need to be reconsidered
from a network-level traffic models because of traffic con-
gestion caused by a surge of vehicles. So Godfrey (1969)
[3] presented macroscopic fundamental diagrams (MFD).
The existence of MFD was verified by data of Yokohama
in 2008 [4]. The MFD is a function describing the nonlin-
ear relationship between the regions accumulation 7;(r)
and the trip completion rate G;(n;(t)) (veh/s) (Fig. 1).
Traffic network control at the macro level is feasible ac-
cording to the proof.

The perimeter control with MFD is introduced to re-
ducing congestion. Daganzo firstly introduced perimeter

flow control policies to single region [5]. Then, Had-
dad and Geroliminis extended optimal perimeter control
to two regions [6]. A nonlinear model used to design-
ing optimal multivariable integral feedback regulators was
introduced to describes the evolution of the multi-region
system [7]. Perimeter control based on linear quadratic
regulator (LQR) was used to two region at an equilib-
rium point by Geroliminis (2013) [8]. Mehmet Yildiri-
moglu proposed equilibrium analysis and route guidance
in large-scale networks with MFD dynamics [9]. Then,
researchers considered time-delay and robust in order to
improve control effect. Robust control framework was
concerned the integration of a bi-modal Macroscopic Fun-
damental Diagrams (MFD) modelling for mixed traffic
for congested single-region and multi-region urban net-
work [10]. Mehdi Keyvan-Ekbatani designed controller
for gating traffic control with time-delay in urban road
networks [11]. Haddad considered robust constrained
control of uncertain macroscopic fundamental diagram
networks [12].
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Fig. 1. Two-region MFD system.

Scholars tried to apply the model predictive control
(MPC) for optimal perimeter control, because MPC is
a predictive control algorithm with feedback correction
and open-loop rolling optimal. Geroliminis proposed a
model predictive approach for two urban regions macro-
scopic fundamental diagrams [13]. Jack Haddad used
MPC to cooperative traffic control of a mixed network
with two urban regions and a freeway [14]. Earlier
works on perimeter control-based MPC schemes, MFD-
based economic MPC schemes to improve mobility used
in heterogeneously congested large-scale urban road net-
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works [15]. Stochastic Model Predictive Control (SMPC)
[16] and nonlinear model predictive perimeter control ap-
proaches [17] are employed for optimal perimeter control
of traffic flow with MFD. Above papers from different
angles to study shows that researchers are aware of that
there are many factors lead to some error between region
perimeter control design and MFD dynamic model. how-
ever, the problem is not completely solved. So a neural
network approach approximate to MFD dynamic system
is proposed in this paper to reduce the error.

The rest of the paper is organized as follows: In Sec-
tion 2, the two-region MFD dynamics is introduced, and
neutral network is conducted to approximate two-region
MFD dynamic system. In Section 3, Instantaneous lin-
earization model is extracted from neutral network model
which is trained in section 2. Generalized predictive con-
trol method is used to give the optimal law in Section 4.
Section 5 presents the numerical experiments. Section 6
concludes the paper.

2. Two-Region MFD Identification Based on
Neural Network System

In this section, traffic network dynamic model for the
two regional MFD system with input and state constraints
is recapitulated. A neural network is constructed to ap-
proximate the dynamic nonlinear MFD systems.

2.1. Two-Region MFD Dynamic Systems

Two-Region perimeter control has certain application
environment, such as the inner area and outer area of the
third ring in Beijing (Fig. 1). Two-region perimeter con-
trol is to control the transfer flow between two regions
with MFD system and maximize the total number of ve-
hicles finished traveling in the two regions. The perimeter
controller only controls the transmission flow between re-
gions rather than controls the traffic flow within regions.

Two-region dynamic evolution of traffic system is [18]:

ny(t) = =My (t)Gy (ni(t)) —

Mia(6)Gy (m (1)) g (1) + oM
M1 ()Ga (n2(t)) uz (1) + g1 (1)
o (t) = —Mn ()G (na(t)) —
Moy (1)Ga (ma (1)) ua (1) + )
Mia(t)Gi (n1 (1)) ui (1) + q2(1)
subject to
My (t)+M(t) =1, My (t)+Mxn(t)=1 . (3)
Mii(l‘)zlz((tt)), M,»,-(t):’:j((:)) N )
0<m(r)<n™, 0<m@) <™ . . .. (5
0<u()<1, 0<wm()<l . ..... (6

where n;(t), i = 1, 2 (veh) is accumulation of region i at
time ¢, u;(¢) is perimeter control input given by perimeter

control denote the percentage of flow allowed to trans-
fer from region i to region j. G;(n;(t)) is completed
transfer flow, (n;;(t)/ni(t)) Gi (n;(t)) is the number of ve-
hicles from region i to region j, and the transfer flow
completed after being controlled by the perimeter con-
troller u;(1) (nij(1)/ni(1)) Gi (mi(1)). W™ and nf™ are the
jammed accumulations in R and R;, respectively. M;; de-
notes the ratio of traffic flow from region i to region i. M;;
denotes the ratio of traffic flow from region i to region
J- qi(z) is the traffic demand and the traffic flow out of
control for R; region, g, (¢) is the traffic demand and the
traffic flow out of control for R, region.

2.2. Two-Region MFD Identification Based on Neu-
ral Network System

The neural network which belongs to the global ap-
proximation method has ability to approximate any non-
linear mapping relation and has good generalization abil-
ity. Thus we use three-layer neural network to identify the
two-region MFD dynamic system as shown in Fig. 2.
nl(t — 1), nl(t —2), l’lz(l‘ — 1), nz(l‘ —2), ul(z‘ — 1), ul(t —
2), up(t — 1), up(t —2) denote the input layer of the neu-
ral network, while n; (), n(¢) denote the outputs layer of
the neural network. (w, W) are the adjustable parameter
weights of the network, and they are trained from the traf-
fic data (n;(¢), u;(¢t), i =1, 2). The “state” x(¢) is then
introduced as a vector composed of inputs. Specify the
training set by:

x(t) =A{lui(t), ()] |i=1,2} . . . . . . (]

The network will predict accumulation vehicles A;(t),
which is close to the true accumulation #;(¢) . Neural net-
work of two-region MFD system has one hidden layer and
the weight between layers are (w, W) and the hyperbolic
tangent and liner activation functions (f, F') [28]:

(Z Wijhj(w +W,0>
=F (Z Wiifi (;szxz-FWjo) +Wio> ,

j=1

®)

The approximate model here may be interpreted as a lin-
ear model extracted from the neural network with one hid-
den layer of tanh units and a linear output. The approxi-
mate model is

k )4
A (Z‘) = ZW,-tanh lz w X +Wwjo +Wp.. . (9
j=1 =1
The mapping (9) to be:
A(t) =g (N(t—1),N(t—2),U(t—1),U(t—2))(10)
() =g (N(t—1),N(t=2),U(t—1),U(t—2))(11)

where N(t) = [n1 (1), na(t)]", U(t) = [u1 (), ua(¢)]". The
mapping is trained by neural network from x(z) to
ﬁi(l‘), i=1,2.
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Fig. 2. Three-layer neural network for two-region MFD approximation.
3. Instantaneous Linearization Model of Two- [ ggl((x(t))) _ M 1
i _ MU Lx(t)=x(2) 2 Lx(t)=x(2)
Region MFD system A= - ggz((x(t))) - ggz((x(z)))
ny(t—i _ ny (t—i _

In this section, two-region MFD system controller i—1.2." l H0=x(r) ’ Ho=x() |
based on generalized predictive control and instantaneous T, g1 (x(1)) 981 (x(r)) 1
linearization model extracted from neural network is pro- C o) ey 0D ()=o)
posed. First, neural network is used to approximate non- B = _ ga(x() _ ga(x(n)
linear two-region MFD system. Second, a linear model is Jur(t=0) { (1) =x(z) Jua (1=0) { (1) =x(z)
extracted from the neural network model. Third, a predic- i=0,1, )

tive controller is designed at each sample to controls the
two-region MFD system [19]. See the Fig. 3 for details.

Linearized model parameters

A

Two-region MFDs Extract
Controller design Linear model
Controller
Parameters
4

Reference
Two-region MFDs

’_> Controller

Fig. 3. Two-Region MFD control system design.

Two-region MFDs

(o), us(t) | m(6), ma(t)

The generalized predictive control method was pro-
posed by Clarke, and Controlled Auto-Regressive Inte-
grated Moving Average (CARIMA) model was used as
prediction model [20]. It has three basic characteristics:
prediction model, rolling optimization and feedback cor-
rection, and presents excellent control performance and
robustness. Extracting linearized model Eq. (9-11) be-
comes to be :

N(t) =—AN(t—1)—A;N(1 —2)+

~ ~ . (12)
BoU(t—1)+BU(t—2)

where N(1) = [n1(2), na(0)]%, U(t) = [u1 (1), uz(1)]".

4. Perimeter Controller Design of Two-Region
MFD

The approximate model may thus be interpreted as a
linear model. The criterion is to maximize the output of
the traffic network. Therefore, the two-region MFD con-
trol problem is described as follows:

N,
JeU@) = Y e+ — N+ )P+

i=N|

" . (13)

AY AUt +i—1)]

i=1

subject to

Uut)=[U@)... Ue+N,-D" . . . . .14
Au(t+i)=0, N,<i<N—1. . . . . .(5)
0<nm(t)<m™ 0<m()<a™ . . . . (16)
0<u(t)<1, 0<up(t)<1, . . . .. .17

Where Nj is the minimum prediction horizon, N, is the
maximum prediction horizon, and N, is the control hori-

zon. N(t+i) are determined as the minimum variance
predictions. A denotes a weight factor for penalizing vari-
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ations in the control input. The optimization problem re-
sults in a sequence of future controls U(r). According
to the principle of rolling optimization, the optimal con-
trol U(¢) denotes calculated by minimizing the objective
function J.

5. Case Studies

The major objective of perimeter control is to operate
the network traffic state in the uncongested regime. Four
experiments are carried out to illustrate the effectiveness
of the proposed method in this paper.

This paper considers a heterogeneous traffic network
which can be divided into two homogeneous regions. A
traffic network with a two-region system is illustrated.

In example 1, both regions Rjand R; are initially in the
uncongested regime, initial accumulation [r;(0),n2(0)] =
[3000, 1800]T (veh). In addition, the traffic demand is set
to be constant. Fig. 4 shows that the accumulation of re-
gion R is decreasing while the accumulation of region
R, is increasing, in the beginning of the control process.
Later, the cumulants of the two regions approach each
other. Fig. 5 presents the control input u; and u,. This
result shown the effective control when the both regions
are uncongested.

In example 2, regions R; is initially congested and
R, is initially uncongested, initial accumulation is
[n1(0),12(0)] = [4000,1800]T (veh). In addition, the traf-
fic demand is set to be constant. Fig. 6 shows that the
accumulation of region R; drops significantly at the first 5
min and the accumulation of two region are uncongested
for the rest of the time. This example shows that the con-
troller is sensitive to the congested traffic condition, and it
effectively eases traffic congestion. And the control inputs
are shown in Fig. 7. This result shown the control effec-
tive when one region is uncongested and another region is
congested.

3500
—nl
—n2

3000

2500

2000

number of vehicles [veh]

1500

0 20 40 60 80 100 120 140 160 180 200
Time [min]

Fig. 4. Example 1. The number of vehicles in two-region.

In example 3, the accumulations of both regions are
in the congested. Initial accumulation is [n1(0),n2(0)] =
[5000,4000]T(veh). Due to the congestion, the trip com-
pletion rate is low at the beginning, so it takes a longer

o o I
B o)} =]

control input u(t)

e
o

0 20 40 60 80 100 120 140 160 180 200
Time [min]

Fig. 5. Example 1.The control inputs of two-region.
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Fig. 6. Example 2. The number of vehicles in two-region.
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Fig. 7. Example 2. The control inputs of two-region.

time to be uncongested, compared to the two experiments
above, the process is shown in Fig. 8. Then, as congestion
is eliminated, the accumulations decline is faster, thanks
to an increase in the completion rate. And the control
inputs are shown in Fig. 9. The Controller alleviates con-
gestion in this examples.

In example 4, regions R; is initially congested and
Ry is initially uncongested, initial accumulation is
[11(0),12(0)] = [5000,3000] " (veh). The demand shown
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Fig. 8. Example 3. The number of vehicles in two-region.
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Fig. 9. Example 3. The control inputs of two-region.
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Fig. 10. Example 4. The number of vehicles in two-region.

in Fig. 12 is high and time-varying. This example simu-
lates the situation of high demand in congestion, such as
morning peak and evening peak in a day.

From Fig. 10, the accumulation of the two regions in-
creased in the first 40 minutes due to the high demand
in the first half hour. Later, as demand decreased, so did
the accumulations in both regions. Of course, the role of
the controller is indispensable here, and the specific con-
trol input is shown in Fig. 11. From Fig. 13, we notice

Perimeter Control for MFD

control input u(t)

0.2+

0 20 40 60 80 100 120 140 160 180 200
Time [min]

Fig. 11. Example 4. The control inputs of two-region.
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Fig. 12. Example 4. The demand of two-region.
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Fig. 13. Example 4. Total travel time spend of neural net-
work and no control.

the advantage of the neural network controller compared
to the no control according to the total travel time spent
(TTS)(min). Moreover, the pink region in Fig. 13 is the
time saved by neural network controller, it shows that the
control method proposed in this paper has a very good
effect.
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6. Conclusions

In this paper, the perimeter control problem for a two-
region network was solved by neural network and gener-
alized predictive control. First, two-region network sys-
tems was identified by neural network. Second, using lin-
earizing neural network models at each operation point,
the MFD system had been transformed into linear sys-
tem. Third, two-region network systems was controlled
by generalized predictive control method with the instan-
taneous linearization model. From the simulation exam-
ples conducted on a two-region MFD network, neural net-
work and generalized predictive controller had an obvious
effect on regional perimeter control, and total travel time
spent have an obvious decrease.
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