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The problem of multi-objective path planning for
robots is to find the shortest, smoothest and safest path
in the presence of obstacles, which can be proposed as
a multi-objective optimization problem with generous
constraints. In this paper, an improved GWO-WOA
method is proposed achieve the solution, which main-
ly consists the following two improvements: First, a
tent chaos mechanism is used to improve the initial
population quality of grey wolf optimizer (GWO). Sec-
ond, the hunting mechanism of the whale optimizer
algorithm (WOA) is replaced to the hunting strate-
gy of GWO, which can improve the tracking perfor-
mance of the optimal global exploration searching so-
lutions and avoid falling into the local optimization.
Then, a smooth path is calculated based on the pro-
posed hybrid GWO-WOA with spline interpolation
method. To further reduce the computing burden, an
one-dimensional search method for iteration process is
proposed and compared with two-dimensional search
method. Finally, simulation experiments demonstrate
the feasibility and effectiveness of the proposed algo-
rithm under different environments.

Keywords: Path planning, Tent chaotic strategy, GWO-
WOA method, Collision avoidance, Path smoothness

1. Introduction

Nowadays, mobile robots are widely used in the field of
manufacturing industries, mining, rescuing, military, agri-
culture, aerospace, just to name a few. Path planning as
one of the key tasks for mobile robots motion planning,
has been widely investigated by scholars[1, 2]. Usually,
there are various paths for a robot to reach one goal point
from one start point, and the goal of path planning is to
find a feasible path satisfying certain constraints in a par-
tially known environment. Based on the existing results,
path planning can be divided into two categories: local
path planning and global path planning[3]. In local path
planning, robots have limited knowledge about environ-
ments, while in global path planning, they have a whole
environment knowledge and can reach the target from a
predefined path[4].
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Since the late 1960s, a great number of path planning
strategies have been published, including classical ap-
proaches (such as cell decomposition, roadmap approach,
artificial potential field based algorithm), probabilistic
based method, fuzzy logic and neural network algorith-
m, etc. However, the above mentioned methods may be
inefficiency due to high computational cost and inaccura-
cy. Since path planning can be treated as an optimiza-
tion problem, recently decades, with the developmen-
t of swarm intelligence algorithm[5], many swarm intel-
ligence methods, such as ant colony optimization (ACO),
particle swarm optimization (PSO), artificial bee colony
(ABC), cuckoo search (CS), grey wolf optimizer (GWO),
whale optimizer algorithm (WOA) and so on, have been
considered as a reliable solution of the path planning
problem, due to that these swarm intelligent methods can
yield effective, accurate and rapid solutions[6–9].

Since each swarm intelligence method may have it-
s own drawbacks, but they can sometimes complement
these drawbacks by each other. Recent years, hybrid algo-
rithms by combining multiple swarm intelligence meth-
ods for better optimization solutions have been studied ex-
tensively. In [10], a novel hybrid PSO-MFB algorithm by
combining PSO and modified frequency bat (MFB) is pro-
posed and used for path planning of an autonomous mo-
bile robot in dynamic environments. In [11], a hybridized
path planning algorithm is designed based on bare-bones
particle (BBO) and differential evolution.

Among the existing swarm intelligence techniques,
GWO is originally presented by Mirjalili in 2014[12],
which is motivated by the hunting process of grey wolves
in nature. Superior to other meta-heuristic algorithms, G-
WO has the advantages of simplicity, flexibility and lo-
cal optima avoidance, it has been widely applied to the
issues of workshop scheduling, image classification, and
parameter optimization. Based on GWO, path planning
problem can be encoded as the best position of wolves.
But it also faces the problems of easily falling into lo-
cal optimum, low accuracy and slow convergence speed.
Since swarm intelligence algorithms need to keep an ex-
cellent balance between the exploration and exploitation
for achieving the global and local searches efficiently, by
analysis, it is noticed that the optimization pattern of G-
WO has great exploitation capacity, while the WOA owns
an aptitude for local exploitation ability. Meanwhile both
the GWO and WOA show the possibility of boosting per-
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formance compared with other swarm algorithms, which
motives the work of this paper by combining the GWO
and WOA methods.

The main contributions of this paper consist the follow-
ing aspects:

1. An improved hybrid GWO-WOA method is intro-
duced to proposed, in which a tent chaos mechanism is
improve the initial population quality of grey wolf opti-
mizer and the hunting mechanism of the WOA is replaced
to the hunting strategy of GWO.

2. The proposed hybrid GWO-WOA method is ap-
plied into the path planning problem which is used to
find some important mid-points of the path, then based
on these points a smooth route is generated with spline
interpolation technique.

3. To reduce the computing burden, one-dimensional
search method is proposed with the aid of coordinate
system transformation technique, simulation results are
demonstrated the effectiveness of the proposed method by
comparing with the two-dimensional search method.

The following structure of this paper is organized as
follows. In Section 2, the problem statements and prelim-
inaries are discussed. In Section 3, an improved hybrid
GWO-WOA is designed. In Section 4, the smooth path
planning problem based on the proposed GWO-WOA is
investigated. Then experimental results are conducted in
Section 5. Finally, In section 6, some conclusions of this
work is given.

2. Problem Statement and Preliminaries

Path planning problem aims to fine a collision-free op-
timized route from one given start point to the goal point
with minimal comprehensive costs, i.e. safety, shortest
distance, path smoothness, shortest time, minimal energy
consumption, etc. In this paper, we mainly focus on two
performance indices: shortest distance and path smooth-
ness.

Considering that there are several mid-points be-
tween the star point (x0,y0) and the end point
(xD,yD), such as the total path is described as
(x0,y0),(x1,y1), · · · ,(xi,yi), · · · ,(xD,yD), then the total
path length dis is the sum of all distances between all
the points including the state point, mid-points and end
point[10], which is described as:

dis =
D

∑
i=0

√
(xi+1− xi)2 +(yi+1− yi)2 . . . . (1)

After these points are obtained, the path can be gener-
ated by connecting these points. However the path will
be not smooth if there are only several mid-points, which
is not applicable in practice. Hence, how to generate a s-
mooth path is an important task after we obtain the main
mid-points.

Some assumptions are given and used in the sequel.
Assumption 1: The obstacles in mobile robot motion

environment are represented by circles and there are only
static obstacles in the map.

Assumption 2: The kinematic constraints of the mo-

bile robots are not taken into consideration. It is assumed
that the mobile robots have a certain size, and the radius
of obstacle is expanded according to the size of robots.

3. Improved Hybrid GWO-WOA Method

In this section, an improved hybrid GWO-WOA
method with tent chaotic strategy is proposed. The
schematic of the proposed hybrid GWO-WOA method is
depicted as in Fig. 1.
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Fig. 1. The schematic of the proposed algorithm

According to [12], the hierarchy of grey wolves ranks
as α , β , δ and ω , in which α is the leader, which is re-
sponsible for making decisions of hunting and other im-
portant issues. Based on the grey wolves hierarchy, the
tasks of group hunting are described as: social hierar-
chy, encircling prey, hunting, attacking prey and search
for prey. In this paper, the proposed method is designed
by improved these steps.

3.1. Tent chaotic initialization strategy
In traditional GWO, the initial positions of grey wolves

are generated randomly. However, although the random-
ness of the initial positions is ensured, the initial posi-
tion of some individuals is still far away from the optimal
point, such that the convergence rate and solution accu-
racy will be reduced. In [13], the tent chaos strategy is
introduced to initialize the population. The structure of
tent mapping is simple and it has great ergodicity and ef-
fectively solves the defect of initialization method. It is
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possible to make grey wolf individuals traverse all posi-
tions of the search space as far as possible.

The tent chaotic mapping function is described as:

ri, j =

{
ri, j/q, 0 < ri, j < q
(1− ri, j)/q, q≤ ri, j ≤ 1

. . . . . (2)

where ri, j is the jth of the function value from the ith grey
wolf to the jth mapping. q is a given tent coefficient.

Then with the help of mapping ri, j, the grey wolf pop-
ulation is generated as:

xi, j = ri, j ∗ (ub− lb)+ lb . . . . . . . . . (3)

where ub and lb are the given upper and lower bound of
the solution space, respectively. xi, j is the jth dimension
of the ith grey wolf.

3.2. Encircling prey
Grey wolves encircle prey during hunting. In order to

mathematically model the encircling behaviour, the fol-
lowing equations are proposed:

~D = |~C ∗~Xp(t)−~X(t)| . . . . . . . . . . (4)

~X(t +1) = ~Xp(t)−~A∗~D . . . . . . . . . (5)

where t indicates the current iteration, ~A and ~C are co-
efficient vectors, ~Xp is the position vector of the prey, ~X
indicates the position vector of a grey wolf.

The vectors ~A and ~C are calculated as follows:
~A = 2∗~α ∗~r1−~α . . . . . . . . . . . (6)
~C = 2+~r2 . . . . . . . . . . . . . . (7)

where components of~α are linearly decreased from 2 to 0
over the course of iterations and ~r1, ~r2 are random vectors
in [0, 1].

3.3. Hunting
In order to improve convergence performance of the

grey algorithm, we hybridize WOA[14] with GWO al-
gorithm[15]. WOA uses logarithmic spiral problems so
it covers broader areas in uncertain search spaces[16]. In
order to mathematically model hunting behaviour, it is as-
sumed that there are two kinds of behaviour to position.
The following spiral and hunting position update equa-
tions are developed based on different probability of each
behavior as follows:

~Xα(t+1)=

{
~Xα(t)−~A∗~Dα , p1 < P
~Dα ∗ eb∗l ∗ cos(2∗π ∗ l)+~Xα(t), p1 ≥ P

(8)

~Xβ (t+1)=

{
~Xβ (t)−~A∗~Dβ , p2 < P
~Dβ ∗ eb∗l ∗ cos(2∗π ∗ l)+~Xβ (t), p2 ≥ P

(9)

~Xδ (t+1)=

{
~Xδ (t)−~A∗~Dδ , p3 < P
~Dδ ∗ eb∗l ∗ cos(2∗π ∗ l)+~Xδ (t), p3 ≥ P

(10)

~X(t +1) =
~Xα(t +1)+~Xβ (t +1)+~Xδ (t +1)

3
(11)

where e is natural constant, b is a constant for defining the
shape of the logarithmic spiral, ~Dα , ~Dβ , ~Dδ respectively
indicate the distance of the ith wolf to the prey. ~Xα , ~Xβ , ~Xδ

indicate α , γ , δ position respectively. b is a constant for
defining the shape of the logarithmic spiral. l is a random
number l ∈ [0,1].

3.4. Search for prey and attacking prey

In order to obtain the mathematical model of approach-
ing prey, the value of ~α is decreased. Note that the fluc-
tuation range of ~A is also decreased by ~α . In other words
~A is a random vector about the ~α , where ~α is decreased
from 2 to 0 over the course of iterations. When random
values of ~A are in [-1, 1], the next position of a search
agent can be in any position between its current position
and the position of the prey.

With the operators proposed so far, the GWO algorithm
is easily to stagnation in local solutions with these opera-
tors. In this paper, strategy is replaced by the whale algo-
rithm mechanism. When |~A| ≥ 1, it is forced ω wolves to
randomly select other members of the population to up-
date their position, rather than the current best.

~D = |~C ∗~Xrand−~X(t)| . . . . . . . . . . (12)

~X(t +1) = ~Xrand−~A∗~D . . . . . . . . . (13)

where ~Xrand is a randomly selected individual of grey wolf
populations.

When |~A|< 1, ω wolves rely on the best wolf to update
position.

4. GWO-WOA-based Path Planning

In this section, a smooth path planning method is pro-
posed based on the proposed hybrid GWO-WOA method,
which considers the collision-free and smoothness perfor-
mances simultaneously.

4.1. Two-dimensional Search method

Considering that there are D points in a path, since s-
tart point and goal point are known, the problem of path
planning using GWO-WOA method is to find D-2 points
in the global space, which makes the path connected by
adjacent points does not pass through obstacles, and the
length of the path from the start point to the end point is
the shortest, it is an optimization problem. The position
of each wolf in population is described as a vector with
D-2 dimensional, which is represented as:

η =

x1 · · · xi xi+1 · · · xD−1

y1 · · · yi yi+1 · · · yD−1

 . . . (14)

where xi, yi (i = 1, · · · ,D−1) are both unknown that need
to be calculated.

In order to make the path smooth, this paper take the
interpolation and spline[17] technique into consideration
by interpolating h points between point (xi−1,yi−1) and
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point (xi,yi), hence, these points can be expressed as:
X̃i = xi−1 + xi1 + · · ·+ xih + xi︸ ︷︷ ︸

h+2

Ỹi = yi−1 + yi1 + · · ·+ yih + yi︸ ︷︷ ︸
h+2

. . . . . . (15)

This two-dimension vector indicates a path node. All
the selected nodes could be connected one by one as the
step going on until getting the target, so these nodes can
indicate a path.

In this paper, the obstacles are assumed to be circles,
in order to deal with the issue of collision avoidance, the
radius of corresponding jth obstacle circle is r j, which is
shown as in Fig.2. The distance of the line between the
path nodes and the center of the obstacle circle is defined
as disobs and formulated as:

disobs =
√
(xi, j− xobs)2 +(yi, j− yobs)2 . . . (16)

where xi, j and yi, j are the horizontal and vertical coordi-
nates of the path node after interpolate. (xobs,yobs) is the
center of an obstacles.

Obstacle 1

Obstacle 3

Obstacle 2

(x , )i iy

1 1(x , )D Dy− −

1 1(x , )i iy+ +

0 0(x , )y
(x , )D Dy

1 1(x , )y

1, 1( )i ix y 2, 2( )i ix y

1, 1( )ih ihx y− −

,( )ih ihx y

Y

X

Fig. 2. The schematic of path planing with two dimensional
search

If it holds that

r j ≤ disobs . . . . . . . . . . . . . . (17)

then, the path is a collision-free path, otherwise the path
intersects the obstacle. The fitness value of each search
agent is calculated as:

dis =
D

∑
i=1

h

∑
j=1

√(
xi−1, j−1− xi, j

)2
+
(
yi−1, j−1− yi, j

)2
(18)

where (xi−1, j−1, yi−1, j−1), (xi, j, yi) are the two coordinate
points of the ith path.

Overall, the process of multi-objective path planning
under two-dimensional search mechanism can be con-
cluded as the following steps:

Step 1: Initialize the grey wolf population Xi based on
ten chaos strategy by Eq.(3).

Step 2: Smooth the path based on spline interpolation
technique by Eq.(15).

Step 3: Determine whether the path is collision-free by
Eq. (17).

If the path is collision-free, the fitness value is kept,
otherwise, the fitness is replaced by a very big value ϒ.

Step 4: Calculate the fitness values of these point by
Eq.(18).

Step 5: If the max iteration reaches, the best fitness
value and the best solution are output. Otherwise, return
to Step 2.

Although this search method can solve the path plan-
ning problem. However it maybe time-consuming. In or-
der to deal with the problem of long optimization time
caused by large amount of data, in the next subsection, a
new one-dimensional search method is proposed.

4.2. One-dimensional search method
In order to reduce the complexity of the algorithm and

reduce the calculation time, we focus on the one dimen-
sional search technique, that is, making the values of X
axis but only optimize the values of Y axis with the con-
version of coordinate model.

The position of each wolf is represented by a one-
dimension vector, the position of wolf η expressed as

η =
(

y1 · · · yi yi+1 · · · yD−1

)
. . . . (19)

where yi (i = 1, · · · ,D− 1) indicates Y axis coordinates
on the path.

Based on [18], in this paper, we smooth the path based
on spline interpolation technique before obstacle detec-
tion on one dimensional search. So the path is more pre-
cise and smooth.

Step 1: Transform the original coordinate system into a
new coordinate whose X axis is the connection line from
the starting point and ending point.

θ = arctan
xD− x0

yD− y0
. . . . . . . . . . . (20) x′

y′

=

 cosθ sinθ

−sinθ cosθ

 x− x0

y− y0

 . . (21)

where θ is the rotation angel of the coordinate system, the
point (x,y) is in original coordinate, the point (x′,y′) is in
the new coordinate.

Step 2: The segment from start point to end point is
divided into D equal portions, as shown in Fig.3.

Since the new X ′ axis is fixed and these points of hor-
izontal axis is equidistant (X = {x0,x1,x2,x3...,xD}), on-
ly the vertical coordinate Y ′ of each node on the vertical
lines need to be optimized, that is the unknown vector
is Y = {y1,y2,y3...,yD−1}. In this way, two dimension-
al path search is reduced to one dimensional search. The
path planning problem is transformed into a D−2 dimen-
sional function optimization problem.

Step 3: Smooth the path based on spline interpolation
technique. In order to reduce the optimization dimension
of the problem and smooth the line curve, the path curve
is constructed by using spline interpolation method un-
der the premise of ensuring the solving accuracy. To be
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Fig. 3. The schematic of path planing with one dimensional
search

specific, divide the X ′ and Y ′ coordinates of the adjacen-
t nodes of the path into n points and create a spline as
Eq.(15).

Step 4: Correspondingly, the fitness function of each
wolf is selected as Eq.(18).

Calculate each wolf’s fitness value, if the path is in con-
tact with an obstacle, give a penalty value.

Step 5: Inverse conversion the coordinates to original
in final optimal path.

The point values of the path are transformed into the
original coordinate as: x

y

=

 cosθ −sinθ

sinθ cosθ

 x′

y′

 +

 x0

y0

(22)

The proposed hybrid GWO-WOA method for mobile
robot path planning is shown in Algorithm 1.

5. Simulation Results

In this section, the proposed hybrid GWO-WOA
method is demonstrated by benchmarked functions and
robot path planning problem, respectively.

5.1. Bench mark functions comparison
In this subsection, the proposed method is bench-

marked on 5 functions which are listed in Table 1, where
Range is the boundary of the functions’ search space, and
fmin is the corresponding minimum value.

Table 1. Benchmark functions

Function Range fmin

F1 ∑
N
i=1 x2

i [-100,100] 0

F2 ∑
N
k=1 |x2

i |+∏
N
i−1 |xi| [-10,10] 0

F3 maxxi{|xi|,1≤ i≤ n} [-100,100] 0

F4 ∑
10
i=1

[
(X−ai)(X−ai)

T + ci

]−1
[0,10] -10.5363

F5∑
n−1
i=1

[
100

(
xi+1− x2

i
)2

+(xi−1)2
]

[-30,30] 0

Algorithm 1 Hybrid GWO algorithm for one-
dimensional path planning

The grey wolf population is initialized by tent chaos
strategy based on Eq.(2-3)

2: Given α , then A, C are calculated by Eq.(6–7)
Transform the original coordinate by Eq.(20–21)

4: Interpolate and spline Xi by Eq.(19)
for all Xi do

6: Evaluate fitness by Eq.(18)
end for

8: Get the first three best wolves positions Xα , Xβ , Xδ .
while t ≤ Nmax (Maximum Iterations) do

10: for all Xi do
Update ~A, ~C, l and p

12: if p≤ 0.5 then
if |~A| ≥ 1 then

14: Update the position of the current search
member by Eq.(4-5)

else
16: Select a random search member ~Xrand

Update the position of the current search
member by Eq.(12-13)

18: end if
else

20: Update the position of the present search
member by using Eq.(8-11)

end if
22: end for

Evaluate fitness for all search members by Eq.(18)
24: Update Xα , Xβ , Xδ

t = t +1
26: end while

Return Xα and Xα of fitness
28: Inversely transform the coordinates in final optimal

path into the original coordinate by Eq.(22)
Output the value of Xα and fitness of Xα

In order to verify the superiority of the proposed
method, it is compared with the GWO, PSO, WOA. For
each benchmark function, the above algorithm was run 10
times starting from same populations randomly generated
and the dimension of the function is 30. Statistical result-
s, the optimization solutions are obtained as in Table 2.
Besides, the iteration process are depicted as in Fig.4-8,
the convergence rate of GWO-WOA in Figs.4-8 is better
than the other algorithms. From the results, we can see
that the proposed GWO-WOA method is able to provide
competitive results on the benchmark functions.

5.2. Planing path comparison
In this subsection, the proposed method is demonstrat-

ed by a path planning problem. In this section, GWO-
WOA is benchmarked using two simulation cases in table.
it is also compared with GWO, PSO, WOA. It is note-
worthy that the above all algorithm used interpolation and
spline technique before obstacle detection on one dimen-
sional search.

In the first case, the starting point is set as (20,80) and
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Table 2. Simulation results of Algorithms

GWO PSO WOA GWO-WOA

F1 1.2488e-62 4.7799e-10 3.1636e-108 2.5591e-102

F2 1.783e-35 4.2067e-05 1.1003e-60 2.284e-70

F3 4.4661e-17 0.30541 0.92221 5.494e-21

F4 -10.5269 -10.5364 -10.5331 -10.5364

F5 0.002521 0.025413 0.033233 0.0015186

Fig. 4. Iteration results of Function 1

Fig. 5. Iteration results of Function 2

Fig. 6. Iteration results of Function 3

the ending point is set as (80,20) in Fig.9. In the second
case, the starting point is (0,0) and the ending point is
(100,100) in Fig.11. We define three nodes on the path,
search agents are 300 search points between two adjacent
points and the iteration is 300 times.

The experimental results are listed in Tables 3-4. The

Fig. 7. Iteration results of Function 4

Fig. 8. Iteration results of Function 5

results are averaged over 10 independent runs and the
Best, Worst, Average represent the optimal fitness value,
worst fitness value, average fitness value.

Table 3-4 show the results for the two cases. From
the results, we can see that one-dimension search time is
shorter than two-dimensional time. In addition, whether
it is one-dimensional or two-dimensional search, the re-
sults of these statistical variables prove that GWO-WOA
has the best ability to avoid local minima. Both in the two
cases, GWO-WOA are much smaller than the other algo-
rithms in the Best, Worst, and Mean values of the results.
Fig.10 and Fig.12 illustrate the convergence cures of all
algorithms base on the two different Map of environment.
As can be seen from these curves, the convergence rate of
GWO-WOA in Fig.10 and Fig.12 is better than the other
algorithms.

Table 3. Comparison results of path length in case 1

Best Worst Average Time

PSO-2 85.829 86.929 86.797 32.37s

WOA-2 85.725 86.725 86.436 31.42s

GWO-2 85.704 86.979 86.409 31.37s

GWO-WOA-2 84.867 85.685 86.351 30.18s

GWO-WOA-1 85.685 86.161 85.514 25.85s
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Table 4. Comparison results of path length in case 2

Best Worst Average Time

PSO-2 142.46 152.56 147.55 31.49s

WOA-2 142.81 146.71 144.76 30.95s

GWO-2 142.54 148.41 145.48 32.48s

GWO-WOA-2 142.34 146.31 144.33 30.19s

GWO-WOA-1 142.19 145.99 144.09 26.17s
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Fig. 9. Comparison results of path planning
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Fig. 10. Iteration results in case 1

6. Conclusion

This paper proposes an improved hybrid GWO-WOA
method for collision-free path planning of mobile robot-
s. First, the initialization of GWO is modified by the tent
chaotic mechanism. Then the hybrid GWO-WOA method
is designed by combining the advantages of the GWO
and WOA. To obtain a smooth path, some important mid-
points are calculated by the proposed hybrid GWO-WOA
method and the others are generated by spline interpola-
tion method. Besides, to reduce the computing burden,
an one-dimensional search strategy is proposed. Finally,
simulation results show that the hybrid algorithm has ad-
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Fig. 11. Path planning results in case 2
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Fig. 12. Iteration results in case 2

vantages in the optimization and convergence speed.
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