
1

Adaptive Optimal Control for A Class of
Continuous-Time Unknown Nonlinear Systems via

Generative Adversarial Networks
Chenglong Wang, Haiyang Fang, Shuping He∗

Abstract: In this paper, we study the adaptive optimal
controller design problems for a class of continuous-time
nonlinear systems by using the generative adversarial
networks (GANs). Combining the Q-learning algorithm
and GANs scheme, we successfully design a new adaptive
optimal control algorithm for continuous-time unknown
nonlinear systems. We adopt the latest GANs training
strategy to stabilize the nonlinear systems and prove the
convergence of the designed adaptive optimal control al-
gorithm. Finally, the effectiveness of the proposed method
is verified by a simulation example and the superiority of
the algorithm is illustrated by comparing the traditional
actor-critic algorithm.

Keywords: Generative adversarial networks (GANs),
Adaptive optimal control, Nonlinear systems, Q-learning,
Reinforcement learning.

I. INTRODUCTION

When we search for the optimal control scheme of nonlin-
ear systems, we always need to solve the Hamilton-Jacobi-
Behrman (HJB) equations. In general, it is awalys difficult to
solve the HJB equations directly. As a favorable tool, dynamic
programming (DP) might be helpful and a series of meaningful
results have been published. But there exists some problems
when applying DP to tackle the high dimensional complex
systems. For this reason, a great deal of effort has been
devoted to develop algorithms that approximate the solution of
this equation [1]–[4]. In fact, the adaptive dynamic program-
ming (ADP) [5]–[7]method can be introduced to the adaptive
optimal controller design for nonlinear systems. It involves
a computational intelligence technique called PI [8], [9]. In
[10], the authors presented a new online PI algorithm to solve
the optimal controller of linear systems without knowing the
internal dynamics. Then the relevant method was introduced
to linear systems with completely unknown dynamics [11].
Liu and Wei [12] extended the PI algorithm to the optimal
control problem of discrete nonlinear systems. Luo and Huang
[13] came up with a data-based approximate PI scheme
for affine nonlinear continuous-time optimal control problem.
Song et. al. [14] studied a data-driven PI-based optimal control
algorithm for a class of continuous-time stochastic systems

C. Wang, H. Fang and S. He are with the Key Laboratory of Intelligent
Computing and Signal Processing (Ministry of Education), School of Electri-
cal Engineering and Automation, Anhui University, Hefei 230601, China.

*Tel./fax: +86 551 63861413. E-mail address: shuping.he@ahu.edu.cn

with Markovian jumps. For other applications of PI schemes,
the readers can refer to [15]–[17].

In the other methods, the agents learn optimal value func-
tions and follow the value iteration strategy. For example, Q-
learning tries to directly find the action value of the optimal
strategy, which is not necessarily applicable to the data genera-
tion. In other words, the obtained Q-learning strategy is usually
different from the sample generation strategy. However, while
solving the problem of high-dimensional observation space,
Q-learning can only deal with discrete low-dimensional action
space. Many interesting tasks, especially the physical control
tasks, have continuous and higher-dimensional operational
space. Q-learning cannot be directly applied to the continuous
domain, because it relies on finding the action function that
maximizes the action value; while in the continuous case, each
step needs to be an iterative optimization process.

One of the main goals in the field of artificial intelligence
is to solve complex tasks through high dimensional sensor
input. In recent years, some significant progress has been made
in combining deep learning with reinforcement learning (RL)
method. The actor-critic algorithm was introduced and further
developed by Werbos to solve the optimal control problem
online.

The actor-critic (AC) method and generative adversarial
networks (GANs) scheme are two kinds of multilevel opti-
mization structures with independent attributes. In both cases,
the information flow is a simple feedforward from a model that
takes action or generates samples to a second model, which
evaluates the output of the first model. The second model is
the only one that has direct access to the special information
in the environment, either the reward information or the real
sample from the relevant distribution and the first model must
learn only from the error signals in the second model. In the
AC method, the neural network function approximation matrix
is used to estimate the action value function. It is difficult
and unstable to use large nonlinear function approximators to
learn value functions. The innovation of GANs lie in its ability
to learn value functions in a stable and robust way by using
generative adversarial networks.

In this paper, we propose a new adaptive optimal control
method inspired by the analogy of AC and GANs scheme.
We use GANs to distribute Bellman target updates through
the generator/discriminator architecture. Our algorithm can
effectively solve the adaptive optimal control problem of
continuous-time unknown nonlinear systems in a stable and
robust way. We will demonstrate the effectiveness of our



2

proposed algorithm as a viable alternative scheme.
The rest of this paper is organized as follows. In Section

II, we give the system description and discuss the optimal
control problem for continuous-time unknown nonlinear sys-
tems. Then the core idea and the structure of GANs are
introduced. In Section III, the GANs-based adaptive optimal
control method is proposed and the stabilizing strategies are
given. We also show the convergence of the GANs-based RL
algorithm. In Section IV, a simulation example is given to
verify the effectiveness of the proposed algorithm.

II. PRELIMINARIES

A. Problem Description

Consider a class of continuous-time nonlinear systems de-
scribed by:

ẋ(t) = f(x(t), u(x(t))), (1)

with the state x(t) ⊆ Rn, the control input u(x(t)) ⊆ Rm and
the unknown nonlinear function f(x(t), u(x(t))) ⊆ Rm×n.
We assume that f(x(t), u(x(t))) is Lipschitz continuous on
Ω ⊆ Rn which contains the origin and nonlinear system (1) is
stabilizable, i.e, there exists a continuous-time control function
u(x(t)) such that it is asymptotically stable on Ω.

For convenience, we rewrite x(t) as xt. The infinite horizon
integral cost is defined as:

V (xt) =

∞∫
0

r(xt, u(xt))dτ, (2)

where r(xt, u(xt)) is a known cost function described by the
systematic observations.

To solve the optimal control problem of nonlinear system
(1), we need to find an admissible optimal control policy
u∗(xt) to minimize the cost index (2). The control policy
u(xt) is called to be admissible if it is continuous, has a finite
associated cost and can stabilize nonlinear system (1).

Then, we define the following Hamiltonian equation:

H(xt, u(xt), V
∗
x (xt)) = r(xt, u(xt)) + V ∗x

T (f(xt, u(xt))),
(3)

where V ∗x (xt) is the derivative of V ∗(xt) with respect to xt
and the optimal cost function V ∗(xt) satisfies the following
HJB equation:

0 = min[H(xt, u(xt), V
∗
x (xt)]. (4)

In order to find the optimal control solution for nonlinear
system (1), we can formulate the following policy iteration.

B. Continuous-Time Policy Iteration Algorithm

For nonlinear system (1), if we know the internal system
dynamic function f(xt, u(xt)) , i.e., the internal systems
dynamic is completely known, we can use the following PI
Algorithm 1 to design the optimal control policy u(xt).

Algorithm 1 PI Algorithm
Initialization:
Select an admissible control policy u0(xt).
Step 1 Policy Evaluation:
Solve for V i(xt) by using

V i(xt) =

t+T∫
t

r(xt, u
i(xt))dτ+V i(xt+T ), (5)

where V i(xt) represents the cost function generated by the
ith iteration.
Step 2 Policy Improvement:
Determine a control policy by:

u(i+1)(xt) = arg min
u(xt)

[H(xt, u(xt), V
i
x(xt)], (6)

where ui(xt) represents the control policy generated by the
ith iteration.
Loop Iteration:
Iterate Step 1 and Step 2; until ui(xt) converges to the optimal
control policy u∗(xt).

Note that the PI Algorithm 1 requires the knowledge of the
system dynamics. In order to avoid using the system internal
dynamics, we introduce the Q-learning algorithm.

C. Q-Learning

Let us define the Q function associated with the control
policy u(xk) as:

Q(xk, u(xk)) = r(xk, u(xk)) + V (xk+1) (7)

where Q(xk, u(xk)) is a function with respect to the state xk
and the control policy u(xk) at the time step k. Define the
optimal Q function as:

Q∗(xk, u(xk)) = r(xk, u(xk)) + V ∗(xk+1). (8)

In terms of Q∗(xk, u(xk)), one can write the Bellman
equation as:

V ∗(xk) = min(Q∗(xk, u(xk))) (9)

Thus the optimal control policy can be given as:

u∗(xk) = arg min
u(xk)

(Q∗(xk, u(xk))). (10)

In contrast to PI Algorithm 1, it does not depend on the
dynamics of nonlinear system (1). Owing to the fact that it is
difficult to find an optimal control policy of u(xt) at each time-
step for nonlinear system (1). Thus, it is impossible to solve
the adaptive optimal control problem by directly applying the
Q-learning methods.

D. GANs

The GANs formulates an unsupervised learning problem as
a game between two opponents: a generator G which samples
from a distribution and a discriminator D which classifies the
samples as real or false, shown in Fig. 1. The GANs game
is then formulated as a zero-sum game where the value is



3

Fig. 1. Information structure and communication method of GAN. The G(Z)
and D(y, xt) represent models with different loss functions. The xt represents
the generation from G(Z), The y(t) is the standard information as the target
and the Z represents the random noise signal. The solid line represents the
information flow and the gradient represents the gradient flow used by the
other model.

Fig. 2. Structure diagram of reinforcement learning method based on GAN.
The G and D represent the neural network model, the xt represents the state
of the system, the h(xt) represents the adaptive optimal controller of the
system simulated by the generator function G(xt) and Q(xt, h(xt)) is the
Q value in Q-learning algorithm.

the cross-entropy loss between the discriminator’s prediction
D(G(Z)) and the authentically generated y = D(xt). In other
words, D and G play the following two-player minimax game
with the value function V (D,G) given by:

min
G

max
D

V (D,G) = Ex[logD(xt)] +Ez[log(1−D(G(Z)))]

(11)
where Ex and Ez are the expectation of logD(xt) and the
log(1−D(G(Z))) on the probability distribution xt and Z.

The adversarial GANs demonstrates that it is a reasonable
model to build an iterative optimization model. We will
illustrate the adaptive control algorithm related to GANs in
the following Section III.

III. MAIN RESULTS

A. GANs Based RL

In order to solve the adaptive optimal control problem for
nonlinear system (1), we present a GANs-based RL method,
shown in Fig. 2.

The GANs-based RL method is to learn a generator function
G(xt) which specifies the current policy by mapping states xt
to a specific control policy u(xt) = h(xt) and a discrimi-
nator function D(xt, h(xt)) which can be learned using the
Bellman equation with Q-learning. The discriminator function

D(xt, h(xt)) that predicts the expected discounted reward
after taking an control action h(xt) in state xt is defined as:

D(xt, h(xt)) = Rt (12)

where Rt =
T∫

j=t

Y (j−t)r(xj , h(xj))dτ is the sum of the

discounted future reward with a discounting factor Y ∈ [0, 1].
The recursive Bellman equation is defined as:

D(xt, h(xt)) =

t+1∫
j=t

Y (j−t)r(xj , h(xj)dτ +D(xt+1, h(xt+1)).

(13)
We consider the D(xt, h(xt)) is parameterized by θQ. It

can be optimized by minimizing the following loss:

L(θQ) = E(D(xt, h(xt))− yt)2 (14)

where yt =
t+1∫
j=t

Y (j−t)r(xj , h(xj)dτ +D(xt+1, h(xt+1)) . E

is the expectation on the probability distribution of the system
states and it satisfies the Markov process.

The control policy h(xt) of the generation is updated by
applying the chain rule to equation (12) with respect to the
generator network parameters θu as:

∇θuh(xt) = ∇GD(xt, G(xt))∇θuG(xt). (15)

Now the optimal controller u∗(xt) can be obtained through
the following policy iteration:

θQ
∗

= arg min
θQ

E(yt −D(xt, h(xt)))
2 (16)

h∗(xt) = arg min
h(xt)

E(D(xt, h(xt)|θQ
∗
) (17)

where D(xt, h(xt))|θQ
∗
) is D(xt, h(xt) under the optimal

discriminator function parameters θQ
∗

in each iteration and
u∗(xt)← h∗(xt) as iterations increase.

Analogy with GANs, we built the following two-player
minimax game with the value function V (D,G) given by:

min
G

max
D

V (D,G) = −L(θQ)+E(D(xt, G(xt))|θQ
∗
). (18)

We regard yt as the score of target data and D(xt, h(xt)) as
the score of data generated by G(xt) and update the classifier
by maximizing −L(θQ). At the same time, we update G(xt)
by minimizing the classifier’s score D(xt, G(xt)|θQ

∗
) when

the discriminator parameters remain the unchanged optimal
parameters θQ

∗
at each iteration.

In practice, h(xt) represents a limited control action of the
control policy u(xt) via the generator function G(xt) and we
optimize θu instead of u(xt). The generator function G(xt)
generates a control action function h(xt) acting on the system
environment and the system generates the result of multiple
control actions to produce an offline data set Buffer C.
The discriminator function D(xt, h(xt)) approaches the target
model by learning and updating the weight parameters θQ in
the data set Buffer C. The function G(xt) through the chain
reaction to update the weight parameters θu and to generate



4

Algorithm 2 RL-GANs Algorithm
Step 1 Initialization:
Randomly initialize the discriminator function D(xt, h(xt))
and the generator function G(xt) with the weights θQ and θu.
Initialize the replay buffer C.
Step 2 Iteration:

1: Initialize a random process Z for the action exploration.
2: for episode = 1, N do
3: Select the control action function h(xt) = G(xt) +Z.
4: Receive the initial observation state x0.
5: Initialize the target functions D∗(xt, h(xt)) and
G∗(xt) with the weights θQ

∗ ← θQ and θu
∗ ← θu.

6: for t = 1, T = step do
7: Explore the environment until the system reaches

the equilibrium state.
8: Execute ht and observe the reward rt and the new

state xt+1.
9: Store the transition (xt, h(xt), rt, xt+1) in C.

10: Sample a random mini-batch n of
(xt, h(xt), rt, xt+1) from C.

11: Set

yt = rt +D∗(xt+1, G
∗(xt+1)). (19)

12: Update the weights θQ by maximizing −L(θQ) as:

−L(θQ) =
1

n

∑
n

(yt −D(xt, h(xt)))
2. (20)

13: Update the weights θu using the sampled gradient:

∇θuG(xt) =
1

n

∑
n
∇GD(xt, G(xt))∇θuG(xt). (21)

14: Update the target networks weight: θQ
∗ ← θQ

θu
∗ ← θu

15: end for
16: end for

a more optimized controller h∗(xt). We can implement our
method online by using Algorithm 2, shown in Fig. 3.

B. Stabilizing Strategies

We adopt some stability methods in GANs field to stabilize
the weight parameters. We have listed three important methods
as follows:

1. We use a trick to prevent gradients from disappearing,
that is, label smoothing replaces 0/1 labels with ξ/1−ξ,
which guarantees the generator will always have infor-
mative gradients.

2. Inspired by GANs, the historical average method adds
a drag term to the gradient descent method to punish
steps that deviate too far from the parameters of the old
average method. This method can effectively prevent the
oscillation caused by different targets of the two models.

3. To prevent the generator from collapsing onto a single
sample, the mini-batch discrimination extends the role of
the discriminator from calculating the value of a single
sample to calculating entire mini-batch.

Fig. 3. The training flow chart of the Algorithm 2.

By using the training method in GANs field, we can well
make the generator function G(xt) and the discriminator
function D(xt, h(xt)) to reach stable weight parameters. On
the basis of the network parameters stability, we can establish
the following convergence proof.

C. Convergence of the GANs-based RL Algorithm

We demonstrate the convergence of our Algorithm 2 by two
steps. Firstly, the generator function G(xt) and the discrimina-
tor function D(xt) of Algorithm 2 can converge to the optimal
weight parameters θu

∗
and θQ

∗
by enough network training in

each iteration. Then, the GANs-based RL method can iterate
to the optimal control policy u∗(xt) in the case of the optimal
weight parameters θu

∗
and θQ

∗
of each iteration.

Theorem 1: Suppose the functions G(xt) and D(xt, h(xt)
have enough capacity at each iteration of the Algorithm 2.
The discriminator function D(xt, h(xt) is allowed to reach
its optimal D∗(xt, h(xt)) and the generate function G(xt) is
updated to improve the following criterion:

θu
∗

= arg min
θu

D∗(xt, h(xt)). (22)

Then the policy iteration of Algorithm 2 converges to the
optimal weight parameters θu

∗
and θQ

∗
in each iteration by

Algorithm 2.
Proof: Note that D(xt, h(xt)) is convex in h(xt). In other
words, if f(xt) = Dx(xt, h(xt)) and Dx(xt, h(xt)) is convex
in xt for every h(xt), then we have fh(xt) = ∂D(xt, h(xt)).
It is equivalent to computing a gradient descent update for
h(xt) at the optimal function D∗(xt, h(xt)) when f(xt) =
D∗(xt, h(xt)). Therefore, with suffificiently small updates of
network weight, we have θQ

∗ ← θQ and θu
∗ ← θu in each

iteration. This completes the proof.
Theorem 2: h(xt) in Algorithm 2 converges to the optimal

control policy u∗(xt) with the initial admissible control policy
h0(xt) when θQ

∗ ← θQ and θu
∗ ← θu in each iteration of

Algorithm 2.
Proof: According to Theorem 1, we can conclude that in
each iteration of Algorithm 2, it will converge to the optimal
weight parameters θu

∗
that minimize the D(xt, h(xt)|θQ

∗
)

without using knowledge on the internal dynamics of system
(1) in each iteration. In [18], it was shown that using the



5

Fig. 4. Model diagram of inverted pendulum device.

policy iteration conditioned by an initial admissible control
policy h0(xt), all the subsequent control policies hi(xt) will
be admissible. Consider that D(xt, h(xt)|θQ

∗
) and h(xt) in

Algorithm 2 which stand for Q∗(xt, u(xt)) and u(xt) in Q-
learing Algorithm. Thus, the policy iteration of (16) and (17)
will converge to the solution of the HJB equation (4) without
using knowledge on the internal dynamics of system (1) when
θQ

∗ ← θQ and θu
∗ ← θu in each iteration. Ultimately, it

follows that u(xt) = h(xt) converges to the optimal control
policy u∗(xt) by policy iteration and it concludes the proof.

In order to demonstrate the effectiveness of Algorithm 2,
we illustrate by the following section IV. Meanwhile, we also
compare the existing AC algorithm to illustrate the superiority
of our designed algorithm.

IV. SIMULATION EXPERIMENTS

To show the feasibilty and applicability of our designed
methods, we give a simulation example related to the inverted
pendulum, shown in Fig 4. The nonlinear model of a inverted
pendulum device [19] is expressed as:{

(M +m)ẍ+ bẋ+mlθ̈ cos θ −mlθ̇ sin θ = F

(I +ml2)θ̈ = mgl sin θ −mlẍ cos θ
. (23)

where the variables of the inverted pendulum device are
described in Table 1.

TABLE I
MODEL PARAMETERS

Parameters Description
M Car’s Mass
m Mass of the pendulum rod
l Length to the center of rod mass
b Friction of the cart
I Inertia of the rod
F Force applied to the cart
x Car position
g Acceleration due to garvity

We construct our actual nonlinear system by giving some
concrete values. For simplicity and repeatability of the simu-
lation experiment, we give the relevant parameter settings.

The angle θ is between the inverted pendulum and the
vertical direction. The random angle θ is between −π and
π. The system observations are θ̇, sin(θ) and cos(θ).

The action represents the effect of the controller on the
inverted pendulum which is equivalent to F in the Fig 4. The
size of F ranges from -1.0 to 1.0.

0 25 50 75 100 125 150 175 200
time-step

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

st
at
e

Fig. 5. The figure shows the state curve of the inverted pendulum. The blue
line is cos(θ), the orange line is sin(θ) and the green line is θ̇. The system
states converge to the target states under the action of the controller.

The exact cost equation is expressed as:

r(t) = θ2 + 0.1 ∗ θ̇2 + 0.001 ∗ F 2 (24)

where θ is normalized between −π and π. Thus the maximum
cost is (π2 + 0.1 ∗ 12 + 0.001 ∗ 12) and the minimum cost is
0. Essentially, the goal is to maintain zero angle, minimize
rotation speed and minimize force.

The number of the training iterations is set as 1000. The
maximum value of the controller exploration steps is set as
10,000. The controller keeps taking actions in the process of
each iteration until the system reaches a balance point.

The discriminator network has an input layer, two hidden
layers and an output layer. The generator network has the
same network structure as the discriminator network. The
dimensions of the two hidden layers are respectively 400 and
300.

The mass of the car is 1.0, the length of the inverted
pendulum is 1.0 and the friction of the car is 0.0.

Fig. 5 shows that the designed RL-GANs algorithm can
achieve a stable target state. We can observe from Fig. 6
that the system states tend to be stabilizable by the designed
optimal controller after 75 time steps. Fig. 7 shows that the
RL-GANs algorithm can converge to an optimal cost and reach
the optimal control after 100 iterations. We compare our results
with the general AC algorithm in Fig. 8 and find that our RL-
GANs algorithm converges faster and shows more stable. In
addtion, the test cost of the AC algorithm has multiple crests
and is instability in the training iterations.

V. CONCLUSION

Inspired by the RL techniques, the adaptive optimal con-
trol problem is studied in this paper. We propose a new
framework to successfully learn the optimal controller design
of continuous-time unknown nonlinear system via GANs.
Our experiments show that the designed RL-GANs algorithm
can improve the traditional RL algorithm and show good
performance features. The simulation example related to the



6

0 25 50 75 100 125 150 175 200
time-step

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

co
nt
ro
l

Fig. 6. The figure shows the control process of the inverted pendulum.

0 200 400 600 800 1000
iterations

0

250

500

750

1000

1250

1500

1750

2000

co
st

Fig. 7. The figure shows that the test cost value of Algorithm 2. There
is fluctuation behind the cost value. its volatility could be offset in the
environment of extremely sparse returns.

0 200 400 600 800 1000
iterations

0

250

500

750

1000

1250

1500

1750

2000

co
st

Fig. 8. The figure shows that the test cost value of AC algorithm. The
convergence rate is slow and the graph fluctuates greatly.

inverted pendulum show the feasibility and applicability of our
designed methods.

ACKNOWLEDGEMENT

This work was supported in part by the National Natural
Science Foundation of P. R. China under Grant 61203051, the
Key Support Program for University Outstanding Youth Talent
of Anhui Province under Grant gxydZD2017001 and the open
fund for Discipline Construction, Institute of Physical Science
and Information Technology, Anhui University.

REFERENCES

[1] M. Abu-Khalaf, F. Lewis, “Nearly Optimal Control Laws for Nonlin-
ear Systems with Saturating Actuators Using a Neural Network HJB
Approac” , Automatica, vol. 41, no. 5, pp. 779-791, 2005.

[2] R. Beard, G. Saridis, j. Wen, “Galerkin approximations of the gener-
alized Hamilton-Jacobi-Bellman equation”, Automatica, vol.33, no. 12,
pp.2159-2177, 1997.

[3] J. Murray, C. Cox, G. Lendaris, and R. Saeks, “Adaptive Dynamic
Programming”, IEEE Trans. on Systems, Man and Cybernetics, vol.
32, no. 2, pp 140-153, 2002.

[4] R. A. Howard, “Dynamic Programming and Markov Processes”, MIT
Press, Cambridge, Massachusetts, 1960.

[5] X. Yang, H. He, D. Liu and Y. Zhu,“Adaptive dynamic programming for
robust neural control of unknown continuous-time non-linear systems”,
IET Control Theory and Applications, vol. 11, no. 14, pp. 2307–2316,
Sep. 2017.

[6] X. Zhong, H. He, H. Zhang and Z. Wang, “Optimal control for unknown
discrete-time nonlinear Markov jump systems using adaptive dynamic
programming”, IEEE Transactions on Neural Networks and Learning
Systems, vol. 25, no. 12, pp. 2141–2155, Dec. 2014.

[7] F. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic
programming for feedback control”, IEEE Circuits and Systems Maga-
zine, vol. 9, no. 3, pp. 32–50, Aug. 2009.

[8] W. Powell, “Approximate Dynamic Programming: Solving The Curses
of Dimensionality”, Optimization Methods and Software, vol. 24, no. 1,
Feb. 2007.

[9] D. Vrabie, O. Pastravanu, M. Khalaf and F. Lewis, “Adaptive optimal
control for continuous-time linear systems based on policy iteration”,
Automatica, vol. 45, no. 2, pp. 477-484, Feb. 2009.

[10] Y. Jiang and Z. Jiang, “Computational adaptive optimal control for
continuous-time linear systems with completely unknown dynamics”,
Automatica, vol. 48, no. 10, pp. 2699–2704, Oct. 2012.

[11] D. Liu and Q. Wei, “Policy iteration adaptive dynamic programming
algorithm for discrete-time nonlinear systems”, IEEE Transactions on
Neural Networks and Learning Systems, vol. 25, no. 3, pp. 621–634,
Mar. 2014.

[12] B. Luo, T. Huang and D. Liu, “Data-based approximate policy iteration
for affine nonlinear continuous-time optimal control design”, Automat-
ica, vol. 50, no. 12, pp. 3281–3290, Dec. 2014.

[13] J. Song, S. He, F. Liu, Y. Niu and Z. Ding, “Data-driven policy iteration
algorithm for optimal control of continuous-time to stochastic systems
with Markovian jumps”, IET Control Theory and Applications, vol. 10,
no. 12, pp. 1431–1439, Aug. 2016.

[14] H. Zhang, H. Liang, Z. Wang and T. Feng, “Optimal output regulation
for heterogeneous multiagent systems via adaptive dynamic program-
ming”, IEEE Transactions on Neural Networks and Learning Systems,
vol. 28, no. 1, pp. 18–29, Oct. 2017.

[15] D. Wang, J. Qiao, “Approximate neural optimal control with reinforce-
ment learning for a torsional pendulum device ”, NEURAL NETWORKS
, vol. 117, pp. 1–7, Sep. 2019.

[16] B. Luo, H. Wu, T .Huang, “Reinforcement learning solution for HJB
equation arising in constrained optimal control problem ”, NEURAL
NETWORKS, vol. 71, pp. 150-158, Nov. 2015.

[17] H. Hachiya, T. Akiyama, “Adaptive importance sampling for value
function approximation in off-policy reinforcement learning ”, NEURAL
NETWORKS, vol. 22, no. 10, pp. 1399-1410, Dec. 2009.

[18] R. Beard, G. Saridis, and J. Wen, “Galerkin approximations of the
generalized Hamilton–Jacobi–Bellman equation”, Automatica, vol. 33,
pp. 2159–2177, 1997.

[19] Y. Zhou and Z. Wang, “Optimal Feedback Control for Linear Systems
with Input Delays Revisited”, Journal of Optimization Theory and
Applications, vol. 163, no. 3, pp. 989-1017, 2014.


	Introduction
	Preliminaries
	Problem Description
	Continuous-Time Policy Iteration Algorithm
	Q-Learning
	GANs 

	Main Results
	GANs Based RL 
	Stabilizing Strategies
	Convergence of the GANs-based RL Algorithm

	Simulation experiments
	Conclusion
	References

