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Abstract: Low-rank matrix factorization (LRMF) fre-

quently appears in various tasks in computer vision,

e.g., bundle adjustment. Singular value decomposition

(SVD) is a well-known approach to solve LRMF. How-

ever, it fails when the matrix is relatively large or the

elements of target are lost. In this paper, we formu-

late the LRMF as a separable nonlinear least squares

problem. An iterative algorithm, a combination of

variable projection (VP) algorithm and BFGS method

(named VP-BFGS), is proposed to solve this problem.

The algorithm first utilizes the VP strategy to elimi-

nate part of the parameters (i.e., a matrix), and then

the BFGS method is used to estimate the other matrix.

In numerical experiments, compared with the joint

method, Gauss-Newton method and LM method, the

VP-BFGS method achieves competitive performance,

especially when the ratio of deficiency to existence is

high.

Keywords: low-rank matrix factorization; quasi-Newton

method; variable projection; separable nonlinear least-

squares

1. Introduction

Many tasks in computer vision can attribute to decom-

posing a large matrix M ∈R
m×n into a product of two low-

rank matrices, e.g., bundle adjustment in visual SLAM

[3][4][6], 3D reconstruction from images [6], blind source

separation and principal component analysis. Mathemati-

cally, the decomposition task can be represented as

M →UV T (1)

where U ∈ R
m×r, V ∈ R

n×r , r is the rank that is usu-

ally much smaller than m,n, i.e., r ≪ min(m,n). The

well-known singular value decomposition (SVD) is an ef-

fective method for solving these problems [1]. Unfortu-

nately, the SVD method fails when the data set is severely

incomplete. In structure from motion, observation matrix

is collected by moving sensors, which signifies that the

feature points can be barely integrated. To solve the case

of missing data and stronge noise in low-rank matrix fac-

torization, we formulate (1) as a separable nonlinear least

squares(SNLS) problem

min
U,V

F(U,V ) = min
U,V

||W ⊙ (UV T −M)||2F (2)

where W ∈ R
m×n is a mask matrix that marks the ex-

istence of value in M with ones and zeros, ⊙ is the

Hadamard or element-wise product, and the || · ||F is the

Frobenius norm.

In the past decades, researchers have proposed vari-

ous algorithms for solving problem (2), including joint

method, alternating least squares algorithm (ALS), em-

bedded point iteration (EPI), and variable projection (VP).

Joint optimization regards LRMF as an ordinary nonlin-

ear optimization, as it ignores the separation structure of

the model, optimizing all parameters at once. The ALS

method considers the separable structure presented in (2)

and optimizes the parameters U and V in an alternating

way. Whereas the LRMF is of obvious separation struc-

ture [9], of which ALS takes the advantage to some ex-

tent to optimize the two variables alternately. However,

in [2], Buchanan and Fitzgibbon pointed out that the ALS

algorithm converges very slowly for ill-condition datasets

(e.g., incomplete or strong noise ones). The EPI strategy

[4] is often used to accelerate the classical bundle adjust-

ment, which comprehensively utilizes the separable struc-

ture.

The VP algorithm was first proposed by Golub and

Pereyra [10], which makes full use of the separable struc-

ture. In this paper, we apply the VP strategy to the LRMF

task and propose an VP-BFGS method. The proposed

method takes advantage of the separable structure of (2),

and utilizes the VP strategy to eliminate the parameters

V , resulting in a reduced function that only contains U .

Then, the BFGS method that just requires the gradient in-

formation of the reduced function is used to update the

remaining parameter U .

The rest of this paper is organized as follows.

• In Section 3, some classical methods for solving sep-

arable nonlinear least-squares are revisited explicitly.

• In Section 4, the VP-BFGS is first proposed to

solve LRMF. Unlike VP in the previous literature, VP-

BFGS optimizes the reduced objective function by BFGS

method instead of LM algorithm. Therefore, the VP-

BFGS benefits from both the simple derivation of BFGS

and the high efficiency of VP.
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• In Section 5, the objective function of the regularized

VP is represented.

• In Section 6, experiments on several datasets are car-

ried out, which indicates the faster convergence and bet-

ter reconstruction of VP-BFGS than joint and ALS opti-

mization strategies, particularly in datasets critically in-

complete.

2. Notations

Some notations and operation rules used in the rest part

of this paper are introduced as follows. Given an arbitrary

real matrix X , define

X+ := (XT X)−1XT (3)

X−λ := (XT X +λ I)−1XT (4)

vec(X) : Rm×n → R
mn which vectorize X into x column-

wisely; ⊗ is the Kronecker product.

3. Methods for solving SNLS problems

Noting that ||X ||2F = trace(XT X) = ||vec(X)||22, the op-

timization problem (2) can be rewritten as follows

F(U,V ) = || f (U,V )||22

= ||ψvec(W ⊙ (UV T −M))||22 (5)

where ψ is a projection matrix of l ×mn, where l is the

amount of visible elements in M. Define uuu := vec(U) ∈
R

mr, vvv := vec(V ) ∈ R
nr, mmm := vec(M) ∈ R

mn; Ŵ :=
ψdiag(vec(W )). Applying the linear algebra to (5) yields

f (U,V ) = ψdiag(vec(W ))vec(UV T −M)

= Ŵvec(UV T )−Ŵmmm

= Ûvvv− m̂mm = V̂ uuu− m̂mm (6)

where m̂mm := Ŵmmm, Û := Ŵ (In⊗U), V̂ := Ŵ (V ⊗ Im) which

can specially expressed as

Û =











Û1

Û2

. . .

Ûm











,V̂ =











V̂1

V̂2

...

V̂m











(7)

The definition of Ûi,V̂i in (7): let Si = { j|wi j} which con-

tains αi1, ...,αi|Si|(1 ≤ αi1 < ... < αi|Si|). The row k of

Ûi ∈ R
Si×r is vT

αik
. With regard to V̂i, uT

i lies in [(αik −

1)r+1 : αikr] of column k. In the following part, several

methods for separable nonlinear least-squares problems

are summarized briefly.

3.1. Joint optimization

Joint optimization stacks uuu and vvv to form a vector x :=
[uuu;vvv] ∈ R

mr+nr, and updates all parameters at once using

second-order optimization(e.g. LM algorithm and BFGS

algorithm). Define Ju := ∂F
∂uuu

, Jv := ∂F
∂vvv

. In general, joint

optimization obtains the increment of ∆uuu by solving

[

Ju Jv

]

[

∆u

∆v

]

=− f (8)

Using the least-squares method, the solution of (8) can be

obtained from the following normal equation:
[

JT
u Ju JT

u Jv

JT
v Ju JT

v Jv

][

∆uuu

∆vvv

]

=−

[

JT
u f

JT
v f

]

(9)

Schur complement [7] is an efficient method to derive the

solution
[

∆uuu

∆vvv

]

=

[

−J+u ( f − Jv(J
T
v P⊥

Ju
Jv)

−1JT
v P⊥

Ju
f )

−(JT
v P⊥

Ju
Jv)

−1JT
v P⊥

Ju
f

]

(10)

where P⊥
Ju

:= I−JuJ+u is a orthogonal projection operation

that projects a vector to the complement space spanned by

the column of Ju.

3.2. Alternating least squares (ALS)

ALS, a instance of block coordinate descent, optimizes

the parameters with initial value uuu0 and vvv0 alternately. It

takes advantages of the separable structure of f (U,V ) and

eliminates uuu and vvv respectively by minimizing (6). For

example, for a fixed uuuk

vvv∗k+1(uuu) = argmin
vvv

∥

∥Ûkvvv− m̂mm
∥

∥

2

2
(11)

= Û+
k m̂mm (12)

Alternately, uuu∗k+1(vvv) = V̂+
k+1m̂mm. However, as mentioned in

the introduction, the ALS shows poor performance when

it is facing ill-conditioned datasets.

3.3. Embedded point iteration (EPI)

EPI updates the parameter uuu by employing of the nor-

mal equation (9) while vvv is determined by minimizing (6).

Setting vvv∗k(uuu) be the optimal solution of F∗(Uk,V ) at iter-

ation k, which implies

∂F∗

∂uuu
= JT

v f = 0 (13)

Inserting (13) into the normal equation (9)
[

JT
u Ju JT

u Jv

JT
v Ju JT

v Jv

][

∆uuu

∆vvv

]

=−

[

JT
u f

0

]

(14)

we can obtain

∆uuu =−(JT
u (I − JvJ+v )Ju)

−1JT
u f (15)

Note that the solution of ∆vvv in (14) is bypassed. The iter-

ation k is as follows:

uuuk+1 = uuuk +∆uuu

vvvk+1 = Û+
k m̂mm

4. Variable projection (VP)

4.1. Derivatives of VP

For the separable nonlinear least-squares problem, the

VP algorithm takes into account the relationship between
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the parameters U and V . It eliminates one part of the

parameters using least-squares method, resulting in a re-

duced function that only contains U . In LRMF, it is al-

ways appropriate to get rid of the variables of large dimen-

sion(w.l.o.g. vvv). Substituting vvv∗ = Û+m̂mm into (6) yields a

reduced objective function

F(U,V ∗) = || f (U,V ∗)||22 = ||(ÛÛ+− I)m̂mm||22 (16)

The form (16) is more complicated than the original opti-

mization problem (6). The key technique of using second-

order method to optimize the reduced function is to cal-

culate the derivative of vvv∗:

dV ∗(U)

dU
(17)

To alleviate computational burden, Kaufman [15] pro-

posed a reduction:
[

∂vvv∗

∂uuu

]

Kau f .

=−Û+V̂ (18)

A large amount of literature shows that Kaufman-form VP

converges analogously to fully-derived VP while benefit-

ing from reduced computational complexity. Kaufman’s

VP algorithm yields the Jacobian matrix and the gradient

of F as follows

J∗u =
∂ f (uuu,vvv∗(uuu))

∂uuu
=

∂ f ∗

∂uuu
+

∂ f ∗

∂vvv

dvvv∗(uuu))

duuu

= (I −ÛÛ+)V̂ (19)

Naturally

g∗u =
∂F

∂uuu
= J∗u

T
f = V̂ T (I −ÛÛ+) f (20)

With the Jacobian matrix at hand, the GN, LM, and

BFGS method can be used to optimize the reduced func-

tion.

When using the GN method, the update of uuu can be

obtained by solving:

JT
k Jk∆uuu =− fk (21)

then,

∆uuuk =−(JT
k Jk)

−1 fk (22)

where Jk := J(uuuk). Observe (21) that, JT
k Jk should be fully

rank or GN method abort.

The GN algorithm is numerically unstable, to overcome

this shortcoming, the LM algorithm introduces a penalty

to achieve:

argmin
∆uuu

|| fk + Jk∆uuu||22 +λk||∆uuu||22 (23)

where λk > 0 is a damping parameter. The solution of

(23) is determined according to the following procedure:

Hk∆uuuk := (JT
k Jk +λkI)∆uuuk =−JT

k fk (24)

by solving which, we have

∆uuuk :=−H−1
k JT

k fk =−J
−λk

k fk (25)

4.2. Broyden-Fletcher-Goldfarb-Shanno method

BFGS method is an efficient quasi-Newton method for

solving nonlinear optimization problems. Compared with

the GN and LM methods, the BFGS method only requires

the gradient information of the objective. which makes it

more convenient for some complicate problems. There-

fore, in this paper, we combine the VP strategy and BFGS

method to propose a VP-BFGS method, which utilizes

the VP strategy to eliminate one part of the parameter v

and then optimizes the reduced function using the BFGS

method.

Define sk := uuuk+1 − uuuk,yk := gu(k+1) − guk, and yk =
∆Hksk , then the update of approximation Hessian matrix

[13] can be expressed as:

∆Hk =
ykyT

k

yT
k sk

−
HksksT

k Hk

sT
k Hksk

(26)

To avoid computing the inverse of Hessian matrix, we

apply Sherman-Morrison formula to (26). Define Dk+1 :=
H−1

k+1, the update formula can be written as follows

Dk+1 = (I −
skyT

k

yT
k sk

)Dk(I −
yksT

k

yT
Ksk

)+
sksT

k

yT
k sk

(27)

For given uuuk and a descent direction pk := −Dkg∗uk of

the reduced function (16), we employ the Armijo inex-

act line search to obtain an appropriate step length, which

satisfies

F(uuuk +λk pk)≤ F(xk)+ γλkgT
k pk,γ ∈ (0,1)

In practical terms, quasi-Newton method contains DFP

and BFGS. Compared with DFP, BFGS has a self-

correcting property, i.e. BFGS will correct the approx-

imate Hessian matrix with deviation during the continu-

ous updating of quasi-Newton matrix [12]. Hence, in this

paper, we concentrate on BFGS rather than DFP.

5. Variable projection with Regularization

For the case of ill-condition, the classical VP method

usually leads to overfitting. Regularization is an effective

method to overcome such shortcoming. By adding the

damping term of the estimated parameters to the objective

function, we have

min
U,V

||W ⊙ (UV T −M)||2F +µ(||U ||2F + ||V ||2F)

The RTRMC algorithm proposed by Boumal and Absil

[11] introduces regularization into LRMF. The rest of the

researchers tend to ignore it in the past decade. Neverthe-

less, a large number of existing works hold unanimously

that VP unregularized converges surpassingly as VP reg-

ularized does [6].

6. Experiments

In this section, we carry out numerical experiments on

several datasets to verify the performance of the proposed

VP-BFGS method. Four algorithms listed in Table 1 are

employed in the experiment.

All the experiments are carried out on ASUS notebook

GU502LV with Intel i7-10875h CPU and 16GB RAM us-
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Table 1. A list of algorithms

ID Strategy Second-Order Solver

JO-LM Joint LM

JO-BFGS Joint BFGS

VP-LM VP LM

VP-BFGS VP BFGS

Table 2. Datasets used for the experiments

Dataset Dimension Filled Filling Rate%

S0 2×2 4 100

S1 10×10 49 49

S2 30×60 919 51.06

S3 40×80 1620 50.62

S4 80×80 3258 50.91

S5 80×100 3901 48.76

S6 8×2000 7862 49.14

D.M. 8×319 484 18.97

L.M. 6×667 2832 70.76

M.M. 6×475 2234 78.39

ing matlab R2017b.

6.1. Datasets

The four algorithms aforesaid applied to the datasets

listed in Table 2. To testify the algorithm performance

from different dimension datasets, S0-S6 are randomly

generated by Matlab, and the scale of them gradually in-

creases, from 2 × 2 to 8 × 2000. We suppose that the

presence of the elements in M obeys the normal dis-

tribution N (1,0) and maintains the filling rate at 50%

or so. In addition to synthetic datasets, several SfM

ones are also within the consideration. We processed the

Dino-Trimmed, Library and Merton-2 from [6] by divid-

ing the observation matrix by a hundred, and renamed

them Dino-Modified, Library-Modified and Merton-2-

Modified respectively. On account of the incompleteness

of the observation matrix, the cost values used in the fol-

lowing part are

cost :=

√

||W ⊙ (UV T −M)||2F
Number o f Visible Points

Datasets those listed in Table 2 are run several times with

different initial points. The global solutions and their

number of convergence steps are recorded in Table 3.

6.2. Experimental Conditions

To keep a fair comparison, for each algorithm, we gen-

erated each element of uuu0 and vvv0 that obeys N (1,0).
Each iteration was going on until either when the upper

limit of iterations that we set it to be 300 was reached

or the norm of the residual dropped blow tolerance 10e-

6. Note that, Û and V̂ are of large size which drag the

iterative process to varying degrees, we introduce some

speed-up tricks mentioned by [6]:

Table 3. Optimas of each datasets obtained by algorithms.

Dataset Rank Optima From Iteration

S0 4 2.62e-16 VP-BFGS 2

S1 4 5.64e-7 VP-BFGS 49

S2 4 2.044 VP-LM 47

S3 4 0.4502 VP-BFGS 109

S4 4 0.4998 VP-BFGS 237

S5 4 0.5048 VP-BFGS 300

S6 4 0.1963 VP-LM 146

D.M. 4 1.47e-13 VP-BFGS 2

L.M. 4 0.198 VP-LM 10

M.M. 4 0.1862 VP-LM 9

• Under the assistance of QR-decomposition [14], given

that Û = QÛ RÛ , the equation (12) can be written as

vvv∗ = (ÛTÛ)−1m̂mm = R−1

Û
QT

Û
m̂mm (28)

• The unregularized objective (5) can be regarded as the

sum of multiple subproblem [8]:

F(U,V ∗) =
n

∑
j=1

||Wj ⊙ (Uvvv∗j −mmm j)||
2
2 (29)

by minimizing (29), we can obtain vvv∗j = Û+m̂mm jjj, where Wj

is the column j of W , vvv∗j is the column j of vvv∗ and mmm j is

the column j of mmm.

6.3. Results

Figure 1 indicates that BFGS based on VP converges in

49 iterations while the other three algorithms run until the

upper threshold is nearly reached. For dataset S3, it is a

classical “horizontal-line” case, the reason is that the joint

optimization falls into the local optimum. And within our

expectation, the VP based algorithms converge efficiently

with global optima obtained.

In all experiments, the VP based algorithms perform

better than the joint optimization algorithm. Take Dino-

Modified as the most striking example (see Figure 3). As

shown in Figure 3, while joint-based algorithms are de-

scending slowly, VP-LM and VP-BFGS converge in two

steps unexpectedly. The “vertical descending” of the cost

indicates the efficiency of variable projection. Note that

the column dimension is far less than row one in Dino-

Modified. By eliminating vvv ∈ R
1276, the parameters re-

duces to uuu ∈ R
32 from x ∈ R

1308, which greatly reduces

the space dimension. Similar circumstances occurred on

dataset S6 with dimension of 8 × 2000 (see Figure 4).

Compared with reduced parameters uuu ∈ R
32, x ∈ R

8032

from joint optimization is inapplicable. As shown in Fig-

ure 4, VP-BFGS steps faster than VP-LM, which further

confirms the efficiency of the proposed algorithm.

7. Conclusions

Low-rank matrix factorization is an important research

topic in computer vision. The classical SVD method is
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Fig. 1. Results of four algorithms on S1 (10×10)

0 50 100 150 200 250

Iterations Number

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

C
o

s
t 

o
f 

D
a

ta
s
e

t 
S

3

JO-BFGS

VP-BFGS

JO-LM

VP-LM

Fig. 2. Results of four algorithms on S3 (40×80)

an important method to deal with such task, however, it

has many limitations in real-world applications. In this

paper, we consider the case that the observation matrix is

of huge size and incomplete. We convert the task of fac-

torizing a large matrix into solving a separable nonlinear

least-squares problem and propose a VP-BFGS method.

The method first utilizes the VP strategy to eliminate part

of the parameter and employ the BFGS algorithm to op-

timize the reduced function. The proposed method fully

takes advantage of the separable structure, and is proven

to be quite valuable on several numerical experiments,

achieving faster convergence and better reconstruction

performance than the joint and ALS optimization strate-

gies.
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