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In this paper, a high-speed railway train timetable
rescheduling (TTR) problem is presented, addressing
the adjustment of the train timetable with a complete
blockage in the station according to the train oper-
ation constraints. Four competitive evolutionary al-
gorithms (EAs), i.e., a dual-model estimation of dis-
tribution algorithm (DM-EDA), self-adaptive differen-
tial evolution (SaDE), comprehensive learning parti-
cle swarm optimizer (CLPSO), and Covariance Ma-
trix Adaptation Evolution Strategy (CMA-ES), are
adopted to solve the formulated problem. The indi-
vidual of the EAs is represented as the permutation of
trains’ departure order in the disrupted station. The
individual is decoded to a feasible schedule of trains
using a rule-based method to allocate the running time
in sections and dwell time in stations. For continuous
space searching algorithms, the random key algorithm
is used to obtain permutations from real vectors. Nu-
merical experiments have been performed on 8 TTR
instances. Experimental results demonstrate the supe-
riority of SaDE in solving TTR.

Keywords: high-speed railway, train rescheduling, dis-
ruptions, evolutionary algorithm, combinatorial optimiza-
tion

1. Introduction
High-speed railway (HSR) plays an important role in

medium-to-long distance transportation service in China.
HSR is operating according to the prescribed timetable.
However, HSR may face inevitable emergencies, e.g., in-
frastructure failure, train failure, natural disasters [19].
Train operations may be disturbed/disrupted with delays.
Therefore, train timetable rescheduling (TTR) is required
for trains to recover to their regular operation.

A variety of studies have been analyzed for the TTR
problem, which is proven to be NP-hard [1, 3]. In
most studies, a mixed-integer linear programming (MILP)

model is adopted, and the CPLEX solver is used to obtain
solutions. A MILP model was proposed in [18] to deal
with the real-time rescheduling of the timetable in case
of a complete blockage in a railway segment. However,
when the scale of the problem is getting larger, using the
CPLEX solver will cost much time, which may exceed
the time limit.

Metaheuristics are usually used for solving NP-hard
problems [2]. Near-optimal solutions are obtained with
limited time. Genetic algorithm-based particle swarm op-
timization had been used to reschedule the HSR timetable
under primary delays [14]. Meng et al. [10] considered
train rescheduling with track assignment and proposed
an artificial bee colony algorithm to solve the problem.
Departure time and arrival time of trains are used for
solution representation. However, this may obtain con-
straint violated solutions during the process. Some re-
lated works considered other approaches to determine the
train timetable. Wang et al. [15] adjusted train departure
sequences based on Monte Carlo tree search. Metaheuris-
tics have also been used to deal with permutation-based
combinatorial optimization [16,17]. Wang and Wang [16]
proposed an effective estimation of distribution algorithm
(EDA) to solve the multi-track train scheduling problem.
However, these permutation-based metaheuristics have
not been used for train timetable rescheduling.

We summarize three contributions in this paper. First,
the high-speed railway train timetable rescheduling prob-
lem with a complete station blockage is proposed and
modeled as a MILP problem. Second, an effective permu-
tation encoding method is proposed for the TTR problem,
and a rule-based decoding method is designed to obtain a
new schedule. These encoding and decoding methods can
manage the entire constraints and guarantee the feasibility
of the solution. Finally, several evolutionary algorithms
are used for solving TTR. Experimental results show that
SaDE can efficiently solve most of the test instances com-
pared with other algorithms.
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The rest of this paper is organized as follows. The TTR
problem is described in Section 2. Section 3 presents sev-
eral evolutionary algorithms to solve TTR. The perfor-
mances of the proposed algorithms are evaluated in Sec-
tion 4. Finally, conclusions and future work are provided
in Section 5.

2. Problem Formulation
Punctuality is an important factor in railway operations.

However, in the case of disruption, the railway system
may fall into disorder. Trains may not be able to arrive
or depart at stations.

In this section, we introduce a MILP model to formu-
late the TTR problem. We need to determine the new ar-
rival and departure time of the trains at stations in order to
recover the railway operations.

There are six assumptions: (1) All trains should follow
their original schedules before disruption happens. (2)
No trains are canceled in the train timetable rescheduling
problem. (3) A macroscopic model is presented without
considering the signaling systems and the station capac-
ity. (4) The disruption considered is a complete blockage
in the first station. All affected trains should depart af-
ter the disruption ends. (5) There is only one disruption
whose duration is a known value. (6) Train reordering is
not allowed except for departure trains in the first station.

For clarity, the notations of the proposed model are
shown in Table 1.

The TTR problem can be stated as the following math-
ematical formulation:

min ∑
i∈T

∑
s∈S

wi(ta
i,s−T a

i,s + td
i,s−T d

i,s) (1)

s.t.

td
i,s− ta

i,s ≥ di,s ∀i ∈ T ;s ∈ S (2)

ta
i,s+1− td

i,s ≥ rmin
i,(s,s+1)+ rs

i,(s,s+1)yi,s + re
i,(s,s+1)yi,s+1

∀i ∈ T ;s ∈ S\D(i) (3)

td
j,s− td

i,s ≥ h(s,s+1)qi, j,(s,s+1)−M(1−qi, j,(s,s+1))

∀i, j ∈ T ; i 6= j;s ∈ S\D(i) (4)
ta

j,s+1− ta
i,s+1 ≥ h(s,s+1)qi, j,(s,s+1)−M(1−qi, j,(s,s+1))

∀i, j ∈ T ; i 6= j;s ∈ S\D(i) (5)
qi, j,(s,s+1)+q j,i,(s,s+1)=1 ∀i, j∈ I; i 6= j;s ∈ S\D(i) (6)

ta
i,s = T a

i,s ∀i ∈ T ;s ∈ S : T a
i,s ≤ Hs

dis (7)

td
i,s = T d

i,s ∀i ∈ T ;s ∈ S : T d
i,s ≤ Hs

dis (8)

ta
i,s∗≥Hs

dis+Ddis ∀i ∈ T :Hs
dis≤T a

i,s∗ ≤ Hs
dis+Ddis (9)

ta
i,O(i) = td

i,O(i) ∀i ∈ T (10)

ta
i,s ≥ T a

i,s ∀i ∈ T ;s ∈ S (11)

td
i,s ≥ T d

i,s ∀i ∈ T ;s ∈ S (12)

qi, j,(O(i),O(i)+1) = qi, j,(s,s+1)

∀i, j ∈ T ; i 6= j;s ∈ S\{O(i),D(i)} (13)

yi,s ≤ td
i,s− ta

i,s ∀i ∈ T ;s ∈ S\{O(i),D(i)} (14)

yi,s ≥
td
i,s− ta

i,s

M
∀i ∈ T ;s ∈ S\{O(i),D(i)} (15)

yi,s ≥ Yi,s ∀i ∈ T ;s ∈ S\{O(i),D(i)} (16)
yi,s = Yi,s ∀i ∈ T ;s ∈ {O(i),D(i)} (17)

ta
i,s, t

d
i,s ≥ 0 ∀i ∈ T ;s ∈ S (18)

qi, j,(s,s+1) ∈ {0,1} ∀i, j ∈ T ; i 6= j;s ∈ S\D(i) (19)

yi,s ∈ {0,1} ∀i, j ∈ T ; i 6= j;s ∈ S (20)

where Eq. (1) is to minimize the total delay time, includ-
ing the delay arrival and departure time of each train at all
the stations. Eq. (2) is the minimum dwelling time con-
straint. Eq. (3) is the minimum running time constraint.
Eqs. (4) and (5) are the headway constraints for departure
headway and arrival headway, respectively. Eq. (6) is the
traverse order constraint of two trains in a section, which
means that either train i traverses on section(s,s+ 1) be-
fore train j or later than train j. Eqs. (7) and (8) guar-
antee the arrival and departure times for the unaffected
trains are equal to the original timetable, respectively. Eq.
(9) guarantees that no trains are allowed to arrive at sta-
tions during the disruption. Eq. (10) means the arrival
time and departure time are the same for the origin sta-
tion. Eqs. (11) and (12) are the timetable constraints that
restrict trains are not allowed to arrive and depart from
stations before the original arrival and departure time, re-
spectively. Eq. (13) guarantees that the actual traversing
orders of all trains are equal to the traversing orders in
their first section. Eqs. (14) to (17) are the train stop in-
dicator constraints. Eqs. (18) to (20) restrict the decision
variables to be real numbers and binary numbers.

3. Evolutionary Algorithms for TTR
Since the TTR problem is NP-hard, there is no

polynomial-time algorithm to obtain the exact solution.
In this section, several evolutionary algorithms (EAs) are
presented for solving TTR. First, encoding and decod-
ing are introduced to transform the original MILP prob-
lem into a permutation-based combinatorial optimization
problem. Then, several EAs are provided for solving the
problem.

3.1. Encoding and Decoding
For TTR, most studies use the real-coded encoding

scheme. The arrival and departure times are used as the
solution. However, it is easy to obtain constraint viola-
tions during the evolutionary computation process. How-
ever, suppose the traversing order of trains in each section
is determined. In that case, we only need to figure out the
arrival and departure times that satisfy the operation con-
straints, e.g., dwelling time, running time, headway con-
straints, etc. In this section, we propose a permutation-
based encoding method for solving TTR. The integer
number in the solution determines the rescheduling order
of the trains. For example, a solution p = (1,2,4,3,5)
represents the order of 5 trains, where train 4 is sched-
uled first before train 3. The order for the other trains
remains the same. Since before disruption happens, trains
follow their original schedules, the set of affected trains
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Table 1. Summary of notations.

Symbol Description
Indices

i, j the index of train, i, j ∈ T
s the index of station, s ∈ S
(s,s+1) the index of section, which is between stations s and s+1, (s,s+1) ∈ K
s∗ the index of the disrupted station, s∗ ∈ S
O(i),D(i) the index of origin station and destination station of train i, respectively

Parameters
T the set of trains
S the set of stations
K the set of sections
T a

i,s the arrival time of train i at station s in the orignal schedule
T d

i,s the departure time of train i at station s in the orignal schedule
di,s the minimum dwell time at station s for train i
Yi,s the train stop indicator in the orignal schedule, 1 if train i stops at station s; 0 otherwise
rmin

i,(s,s+1) the minimum running time at section (s,s+1) for train i
rs

i,(s,s+1) the additional time caused by starting for train i in section (s,s+1)
re

i,(s,s+1) the additional time caused by stopping for train i in section (s,s+1)
h(s,s+1) the minimal headway between two consecutive trains of the same direction on section (s,s+1)
wi the weight value for train i
M a large positive number
Hs

dis the start time of the disruption
Ddis the duration of the disruption

Decision variables
ta
i,s the actual arrival time of train i at station s

td
i,s the actual departure time of train i at station s

qi, j,(s,s+1) the actual traversing order, 1 if train i traverses on section (s,s+1) before train j; 0 otherwise
yi,s the actual train stop indicator, 1 if train i stops at station s; 0 otherwise

Tdis can be determined if the arrival time in the first sta-
tion is after Hs

dis. Therefore, |Tdis| is the dimension of the
permutation-based optimization problem.

We obtain the actual arrival time and departure time
through the decoding procedure shown in Algorithm 1
for a permutation encoded solution p = (p1, p2, . . . , p|T |).
Besides, the feasibility of the solution decoded from the
permutation can be guaranteed since the constraint han-
dling technique is implied during encoding and decoding.
It follows a rule that trains may arrive and depart at sta-
tions once they are allowed as soon as possible.

Remark 1: In Algorithm 1, constraints for TTR are
satisfied. In line 22, the condition will be met when an
addition stop may be added in station s. It may add to
the total running time for section (s−1,s) because of ad-
ditional time caused by stopping. Therefore, the arrival
time should be updated. If the arrival time is larger than
the departure time, adding stop is canceled, and the arrival
time is set to the departure time.
3.2. EAs for TTR
3.2.1. A Dual-Model Estimation of Distribution Algo-

rithm
EDA was first introduced in 1996 [11]. It estimates the

overall distribution of the parent solutions and updates a
probabilistic model with the superior individuals. New
solutions are sampled from the model. Therefore, it is vi-
tal to select a suitable probability model of EDA. For a

permutation-based optimization problem, node histogram
model (NHM) and edge histogram model (EHM) are fre-
quently used models [8]. Therefore, a dual-model esti-
mation of distribution algorithm (DM-EDA) is proposed
to solve TTR. Readers can refer to [8, 9] for more detail
informations. The main components of DM-EDA are in-
troduced as follows:

Selection Operator. Truncation selection is used to
select the top Nadv solutions from parent solutions based
on the objective values.

Modeling. Both NHM and EHM are used. The node
histogram matrix and edge histogram matrix are initial-
ized by equal probability. Both models are equally chosen
during the process.

Sampling Operator. The sequence of each individual
is obtained by the roulette wheel.

Restart Strategy. The determinants of the matrices are
0 after initialization. The determinant of the histogram
matrix is approaching 1 during the process. This matrix is
reinitialized if its determinant is less than 1− ε .
3.2.2. Self-adaptive Differential Evolution

Differential evolution (DE) is first proposed by Storn
and Price [13]. There are three operations, including mu-
tation, crossover, and selection. Different trial vector gen-
eration strategies can be selected, as well as three con-
trol parameters: crossover rate, scaling factor, and pop-
ulation size. Self-adaptive differential evolution (SaDE)
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Algorithm 1 Decoding Procedure
Input: The original timetable information; The disrup-

tion information; The set of affected trains Tdis; Schedul-
ing order of the trains p = [pi]1×|T |
Output: The actual arrival time ta

i,s and departure time td
i,s

1: for i = 1 to |T |− |Tdis| do
2: for s = O(i) to D(i) do
3: ta

i,s = T a
i,s; td

i,s = T d
i,s;

4: end for
5: end for
6: for i = |T |− |Tdis|+1 to |T | do
7: if i = |T |− |Tdis|+1 then
8: ta

pi,O(pi)
= Hs

dis +Ddis;

9: td
pi,O(pi)

= ta
pi,O(pi)

;
10: else
11: ta

pi,O(pi)
= max(td

pi−1,O(pi−1)
+

h(O(pi),O(pi)+1),T a
pi,O(pi)

);

12: td
pi,O(pi)

= max(ta
pi,O(pi)

+dpi,O(pi),T
d
pi,O(pi)

);
13: end if
14: ypi,O(pi) = Ypi,O(pi);
15: for s = O(i)+1 to D(i) do
16: ypi,s = Ypi,s;
17: ta

pi,s = max(td
pi,s−1 + rmin

pi,(s−1,s) +

ypi,s−1rs
pi,(s−1,s)+ ypi,sr

e
pi,(s−1,s),T

a
pi,s);

18: ta
pi,s = max(ta

pi,s, t
a
pi−1,s +h(s−1,s));

19: td
pi,s = max(ta

pi,s +dpi,s,T
d
pi,s);

20: if s < D(pi) then
21: td

pi,s = max(td
pi,s, t

d
pi−1,s +h(s,s+1));

22: if sgn(td
pi,s− ta

pi,s)> ypi,s then
23: ta

pi,s = min(td
pi,s−1 + rmin

pi,(s−1,s) +

ypi,s−1rs
pi,(s−1,s)+ re

pi,(s−1,s), t
d
pi,s);

24: ypi,s = sgn(td
pi,s− ta

pi,s);
25: end if
26: end if
27: end for
28: end for
29: return

uses a self-adaptive method to choose trial vector genera-
tion strategies and control parameter values [12]. Readers
can refer to [12] for more detail informations.
3.2.3. Comprehensive Learning Particle Swarm Opti-

mizer
Particle swarm optimization (PSO) is a popular evolu-

tionary computation technique [5]. Each particle in the
swarm updates its position using its own experience and
other particles’ experiences. Comprehensive learning par-
ticle swarm optimizer (CLPSO) is a variant of PSO [6].
Each dimension of a particle learns from the best cor-
responding dimension of the particle. Readers can refer
to [6] for more detail informations.
3.2.4. Covariance Matrix Adaptation Evolution Strategy

Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) is a state-of-the-art optimizer for single-

objective continuous functions first introduced in [4].
CMA-ES also uses a probability model to obtain new so-
lutions. It works by sampling solutions from a multivari-
ate normal distribution. Readers can refer to [4] for more
detail informations.

3.2.5. Random Key Algorithm

Since SaDE, CLPSO, and CMA-ES are algorithms de-
signed to search in continuous space, the random key al-
gorithm is applied to transform the real-valued vector to a
permutation. Given a real vector (3.5, 2.4, 1.6, 0.5, 4.1),
the permutation obtained is the ranking of the real vector,
which is (4, 3, 2, 1, 5). The range for each element in the
real vector is also the dimension of the vector.

4. Computational Experiments
This section presents the performance investigation of

the proposed algorithms. At first, we present the test in-
stances for TTR. Then, we solve the problem under dif-
ferent methods, including exact solutions by CPLEX. All
experiments were carried out on a PC with an Intel Xeon
Gold 5218 CPU 2.30GHz and 32 GB internal memory.
Exact solutions for TTR problems were implemented in
MATLAB R2019b using YALMIP as the modeling lan-
guage, and CPLEX 12.10 with default parameter settings
[7]. EAs for TTR problems were implemented in MAT-
LAB R2019b.

4.1. Test Instances for TTR
Due to the lack of benchmark instances with disrup-

tions for TTR in literature, we first develop the test in-
stances. The Beijing–Tianjin intercity railway timetable
from Beijing South to Tianjin is considered in this pa-
per. There are altogether 6 stations and 5 sections. 40
trains downstream from 6:00 to 12:00 are considered for
the railway timetable, which is shown in Fig. 1. The min-
imum dwell time for train stops at stations is set to 2 min
and no dwell time for pass-through stations, the origin
stations, and destination stations. The minimum running
time of each section is shown in Table 2. The additional
times caused by starting and stopping are set to 2 min and
3 min, respectively. The minimal headway is set to 4 min.
The start time of the disruption Hs

dis is set to 6:40. s∗ is set
to 1, which means the disruption is in the first station. M
is set to 1440 min.

We categorize the generation of wi into the following
two cases:

Case 1: The weight values wi of trains are set to 1.
Case 2: The weight values wi of trains are generated as

uniformly distributed random integers in a range between
1 to 10.

To validate the performance of the EAs, we produce 8
test instances. The first four instances (No. 1 ∼ 4) are
from Case 1, and the last four instances (No. 5 ∼ 8) are
from Case 2. The settings of the two basic parameters T
and Ddis are listed in Table 3. For instance with the num-
ber of trains T less than 40, e.g., instance No. 1, the first
train is the same train starting from 6:00. We do not need
to adjust the schedule of all 40 trains when the duration of
the disruption is only 30 min. As a result, T for different
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06:00 07:00 08:00 09:00 10:00 11:00 12:00
Tianjin

Nancang

Wuqin

Yongle

Yizhuang

Beijing South
1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17181920 212223 2425 2627 28 2930 31323334 35 36 3738 39 40

Fig. 1. Original timetable for Beijing–Tianjin intercity rail-
way with 40 downstream trains within 6-h time horizon.

Table 2. The minimum running time in each section be-
tween two stations.

No. Section Time (min)
1 Beijing South - Yizhuang 5
2 Yizhuang - Yongle 5
3 Yongle - Wuqin 6
4 Wuqin - Nancang 5
5 Nancang - Tianjin 5

instances are generated according to the duration of the
disruption Ddis.

4.2. Parameter Settings
For all the algorithms, the particle/population size is

set to 10 ·D, where D is the dimension of the searching
space. For DM-EDA, the subpopulation size Nadv is set
to D, which is 10% of the population size. The learning
rate µn and µe are both set to 0.2. The predefined thresh-
old ε is set to 0.01. For CLPSO, the acceleration con-
stant c is set to 1.49445. The inertia weight w is selected
linear decreasing from 0.9 to 0.4. Termination criterion
and number of independent runs: Each algorithm is ter-
minated when 10000 ·D fitness evaluation is reached (i.e.,
MaxFEs = 10000 ·D). The independent runs for each al-
gorithm on each instance are set to 20.

The parameter settings of the four algorithms are kept
the same as the original papers. Besides, for the CPLEX
solver, the termination time is set to 3600s.

4.3. Results and Analysis
This section provides the experimental results of the

four algorithms and CPLEX in solving TTR. Table 4
shows the result of 20 independent runs of each algorithm
with mean values and standard deviations. For CPLEX, it
only runs once.
4.3.1. The performance of EAs

It can be drawn from Table 4 that SaDE outperforms
other methods. In five instances (No. 1, 2, 4, 5, and 6), the
results of SaDE equal that of CPLEX. Moreover, for in-
stances No. 3 and 7, the results of SaDE are only slightly
larger (0.07% and 0.01%) than that of CPLEX (within one
hour). In instance No. 8, the result of SaDE is better than
that of CPLEX (within one hour).

Table 3. Setting of the two basic parameters for the test
instances.

No. |T | Ddis (min) No. |T | Ddis (min)
1, 5 15 30 2, 6 20 50
3, 7 30 70 4, 8 40 90
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Fig. 2. Convergence curves of the proposed DM-EDA,
SaDE, CLPSO, and CMA-ES for several test instances.

In instances No. 1 and 2, all four EAs converge to the
optimal value. It is because the size of the instance is
small, and the algorithms can cover nearly all feasible so-
lutions. For instances No. 5 and 6 with different train
weights, only SaDE and CLPSO converge to the optimal
value. CMA-ES converges to optimal in instance No. 5,
whereas DM-EDA cannot converge to the optimal.
4.3.2. Convergence Analysis

Fig. 2 provides the converge curves of the four EAs in
instances No. 3, 4, 7, and 8. The curves are zoomed in
some areas for better visualization. The horizontal axis
and the vertical axis represent the number of fitness eval-
uations and the mean of the objective function of 20 runs,
respectively. It can be drawn from the figure that CMA-
ES converges faster than other algorithms. SaDE con-
verges second but provides better results.
4.3.3. Running Time Analysis

Table 5 shows the running time of the four EAs and
CPLEX. It also shows the mean values and standard de-
viations of 20 independent running for EAs. The result
shows that DM-EDA takes the longest time compared
with the other EAs. It can be seen that all instances can
be solved within one minute. However, the running time
for CPLEX increases a lot with the increase of the prob-
lem size. For instance No. 7, the total running time is
around 2862s, and for instances (No. 3, 4, and 8), the total
running time is more than 3600s. This result implies the
efficiency of the proposed framework with permutation-
based encoding and the rule-based decoding methods.

5. Conclusion
The high-speed railway TTR problem is formulated as

a MILP problem. Four EAs are designed to solve TTR.
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Table 4. Results of the comparison between DM-EDA, SaDE, CLPSO, and CMA-ES.

No. DM-EDA SaDE CLPSO CMA-ES CPLEX
1 1628.0000 ± 0.0000‡ 1628.0000 ± 0.0000‡ 1628.0000 ± 0.0000‡ 1628.0000 ± 0.0000‡ 1628.0000‡

2 3874.0000 ± 0.0000‡ 3874.0000 ± 0.0000‡ 3874.0000 ± 0.0000‡ 3874.0000 ± 0.0000‡ 3874.0000‡

3 7570.8000 ± 34.5522 7272.8000 ± 7.5226 7274.4000 ± 7.6116 7284.3000 ± 0.7327 7268.0000†

4 12539.2000 ± 55.0154 12070.0000 ± 0.0000‡ 12072.1000 ± 3.3388 12081.7000 ± 13.2709 12070.0000†

5 6462.0000 ± 0.0000 6126.0000 ± 0.0000‡ 6126.0000 ± 0.0000‡ 6126.0000 ± 0.0000‡ 6126.0000‡

6 15386.0000 ± 0.0000 14810.0000 ± 0.0000‡ 14810.0000 ± 0.0000‡ 15060.6000 ± 695.6067 14810.0000‡

7 31475.0500 ± 684.5033 26874.6000 ± 8.0026 26875.3000 ± 8.3168 27177.0000 ± 330.6453 26872.0000‡

8 59492.1000 ± 1055.7585 43125.0000 ± 10.7508 43636.0000 ± 157.0169 43697.0000 ± 599.0109 43128.0000†

†
CPLEX stopped after running for one hour.

‡
Optimal value.

Table 5. Runtime performance of different algorithms (sec.).

No. DM-EDA SaDE CLPSO CMA-ES CPLEX
1 5.7372 ± 0.4578 8.1800 ± 0.6489 3.7526 ± 0.2992 2.2386 ± 0.3614 10.3855
2 10.0875 ± 0.6872 11.9927 ± 0.6156 5.5700 ± 0.3859 3.0539 ± 0.2743 64.7492
3 24.8920 ± 0.9677 19.9135 ± 1.2381 11.2691 ± 1.8045 6.0701 ± 1.0042 –
4 47.5454 ± 1.8224 30.0148 ± 2.1255 17.3618 ± 0.6499 9.6739 ± 0.1859 –
5 5.1246 ± 0.5452 8.1143 ± 1.1712 3.7058 ± 0.6896 1.8761 ± 0.3053 10.5488
6 10.2779 ± 1.2930 12.3090 ± 2.0349 6.0593 ± 0.7121 2.7641 ± 0.1174 30.5911
7 24.8921 ± 0.8240 20.0972 ± 1.1450 11.3079 ± 1.3316 6.2739 ± 1.1048 2861.8612
8 49.8737 ± 3.1044 31.1891 ± 2.9282 17.4095 ± 0.8151 10.4551 ± 1.6275 –

– CPLEX cannot find optimal value after running for one hour.

A novel encoding and decoding method are specially de-
signed for TTR, transferring the original problem to an
unconstrained one. This avoids a large amount of inef-
fective search in the solution space. After being tested in
8 test instances, SaDE outperforms other algorithms and
shows its efficiency compared with CPLEX. The results
can be obtained within one minute which is suitable for
real-time rescheduling. In the future, we will consider
situations with more types of trains (e.g., trains with dif-
ferent prefixes including G, C, D) and consider reorder-
ing in other stations based on the feature of the timetable.
Meanwhile, considering the uncertainties in the dynamic
environment will make the model more practical.
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