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Abstract. Cloud Computing and workflows provide a 

good deployment and execution environment for 

scientific applications, but effective scientific 

workflow management depends on the estimation of 

task execution time to a great extent. However, due to 

the diversity of task inputs, the heterogeneity of 

resources and the high dynamics of cloud 

environments, as the basis of task scheduling and 

resource allocation in cloud computing, the task 

runtime estimation still faces great challenges. In this 

paper, we propose an XGB (Extreme Gradient 

Boosting)-based workflow task runtime prediction 

method to mine the relationship between task runtime 

and its static and dynamic influencing factors through 

feature analysis to finally result in a prediction model 

for online use. To verify the effectiveness of our 

algorithm, a series of experiments are conducted over 

three real scientific workflow applications, and the 

experimental results show that the proposed method 

is superior to the existing algorithms in task runtime 

prediction accuracy. 

 

Keywords: Cloud Computing; Workflows; Execution 

Time Prediction; Feature Analysis; XGB 

1.  Introduction 

The cloud computing provides scientists with great 

advantages for hosting and deploying their scientific 

applications in a fast and cost-effective way, like elastic 

resource scaling, rapid and on-demand resource 

provisioning as well as pay-per-use pricing scheme [1]. 

These benefits drive scientists to migrate their large-scale 

applications to the cloud and use workflow to manage its 

execution [2]. These scientific applications are usually 

data-intensive or resource-intensive, involve a large 

number of computing tasks, and can be described as 

Directed Acyclic Graphs (DAGs), where nodes represent 

tasks, and directed edges denote inter-task data or control 

dependencies. Since scientific workflow applications are 

often time-consuming and resource-intensive, the key to 

manage them efficiently is to optimize its execution time 

and resource usage so as to reduce their renting cost for 

the cloud. These goals can be achieved by optimization 

algorithms, such as scheduling or resource provisioning, 

i.e., selecting the most suitable resource for each 

workflow task respectively to minimize the makespan 

and execution cost for the whole workflow. But 

scheduling or resource provisioning technologies need 

related information about the runtime of workflow tasks 

to match an appropriate and best set of resources for all 

the workflow tasks. Hence, estimating runtime for 

workflow tasks is essential and critical, particularly in the 

dynamic and cost-centric cloud environment [3]. 

Accurate runtime estimation for workflow tasks, can 

enhance the enforceability of scheduling solutions and 

effectiveness of scheduling algorithms, on the other hand, 

can improve the utilization rate of cloud resources [4], 

and eventually increase the customer Quality of Service 

(QoS) as well as the competitiveness of cloud data 

centers or Cloud Service Providers (CSPs) [5]. 

However, most of the previous work is based on 

traditional methods, and more or less ignores the 

dynamic characteristics of the cloud, such as statistical 

description [6], similarity analysis [7] and distribution 

function [8]. For regression and classification problems, 

machine learning (ML) based methods are considered to 

be the most advanced and potential solution. It learns the 

relationship between a set of inputs and their related 

outputs through an in-depth observation of the 

characteristics of corresponding data. In order to capture 

more attributes that may affect the execution time of 

cloud workflow tasks, a machine learning method is 

adopted to provide a better solution by characterizing the 

dynamic changes in tasks, other static factors and cloud 

performance. There are three methods to apply machine 

learning methods to the runtime prediction of workflow 

tasks in the cloud: (1) time series, (2) feature analysis, 

and (3) the combination of time series and feature 

analysis.  
For the time series related methods, the execution time 

of workflow tasks is predicted based on the time series 

records of previous tasks and their influencing factors. 

Chen J et al. [9] developed a runtime prediction method, 

in which some potential periodic patterns were identified 

from a large amount of time series data and the 
attenuation factors were introduced to control the 

influence of different time periods. Yan G et al. [10] 

found that the short-term contributes greater to prediction 

than the long-term for time series data, so they selected 

the neighborhood of time series through a local trend to 

predict the runtime for workflow tasks. Tran N et al. [11] 

proposed a multivariable runtime prediction method by 

using fuzzy technology, which considers the dynamic 

changes of tasks, cloud resource performance and other 
time factors comprehensively. 

However, in a cloud like IaaS, due to the heterogeneity 

brought by resource provision and the performance 
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differences resulting from resource configurations, for 

the same workflow task, different resource allocation 

may lead to different execution times. Predicting task 

execution time only based on time series is difficult to 

provide enough accurate execution time prediction for 

workflow tasks in the cloud. To capture the attributes of 

tasks, applications and resources that affect the change of 

task execution time, the second type of time prediction 

based on feature analysis is developed. This category 

requires workflow application properties, such as input 

data and application parameters, as well as specific 

details of cloud resources and cloud environment, such 

as the CPU, memory and bandwidth. Silva R F D et al. 

[12] estimated task execution time by analyzing the 

impact of fine-grained information such as I/O, memory 

and CPU on task execution time for cloud workflows. 
Pham T P et al. [13] proposed a two-stage prediction 

method which achieved better results than the prior 

single-stage ones, by taking pre-runtime parameters, 

such as provenance and resource features obtained from 

benchmark, and the fine-grained information defined as 

runtime parameters into account.  

Although these feature analysis methods consider the 

complexity from the diversity of tasks and the 

heterogeneity of cloud resources, they cannot grasp the 

dynamic characteristics of the cloud computing 

environment, such as network bandwidth, time change 

and other factors affecting task execution time. This is 

not applicable to real-time scenes that need to process a 

large amount of data and deal with the performance 

changes of cloud resources at the same time.  

 To predict task execution time, we consider its 

influencing factors comprehensively in cloud workflows 

from 3 aspects, i.e., virtual resources, and static & dynamic 

attributes related to physical resources, then construct an 

XGB-based prediction model by combining the runtime and 

pre-runtime parameters together to realize more precision 

prediction.  

2.  Proposed Method 

In this section, we first introduce the cloud workflow in 

Section 2.1, then briefly introduce the XGB algorithm in 

Section 2.2, and finally introduce our time prediction model 

based on XGB in Section 2.3. 

2.1. Cloud workflows 

With the increasingly mature and widespread application of 

cloud computing, more and more scientists execute their 

complex scientific computing processes in the cloud, that is, 

scientific applications or cloud workflows. A workflow 

application can be modeled as a task-on-node DAG

( , )W T E , in which  1 2, , , nT t t t  is the set of tasks and 

  , | , ,i j i jE t t t T t T i j    is the set of edges. Each edge 

(
it ,

jt ) denotes the dependencies between task 
it  and its 

successor 
jt  in the workflow. Hence, task 

jt  can be 

executed only after task 
it  has completed execution and the 

associated data or file resulting from 
it have been 

transferred to
jt . Usually, the definition and execution of a 

workflow are accomplished by the workflow management 

system, and we assume that each task can be processed on 

one or several rented resources, e.g., virtual machines. 

The complexity of tasks and the heterogeneity of cloud 

resources may lead to different execution times. Please note 

that workflow tasks differ in their instruction lengths, inputs 

and outputs, while virtual and physical resources have 

different configurations, such as disk, memory and CPU. In 

addition to the static (pre-run) factors available before task 

execution, runtime variables (such as network speed and 

disk I / O) that can only be obtained during task execution 

also affect task calculation time. The combination of pre-run 

and runtime attributes can obviously provide better 

execution evaluations and enhance the prediction accuracy. 

As mentioned above, the complexity of tasks and the 

dynamic characteristics of cloud influence task execution 

time. Some attributes can be obtained before execution, 

while the others can only be collected during execution. 

Tasks are continuously monitored in cloud data centers, so 

that their resource consumptions can be recorded, and the 

usage of different resources such as CPU, memory, and I/O 

are captured. These time-series records are stored in a 

monitoring database, which need to be updated and are later 

used to estimate task execution time. And the considered 

runtime attributes are detailed in Table. 1.  

Table. 1 The considered runtime parameters 

Type Runtime parameter and description 

Workflow 

Task 

Start time: start moment of task execution. 

End time: end moment of task execution. 

Tcpu_avg: average CPU used by the task.  

Tcpu_max: max CPU used by the task. 

Tmem_avg: average memory used by the task. 

Tmem_max: max memory used by the task. 

Virtual 

Resource 

Vcpu_util: CPU utilization of virtual 

computational resource. 

Vmem_util: memory utilization of virtual 

computational resource. 

Vmem_gps: normalized memory bandwidth of 

virtual computational resource. 

Vnet_in: normarlized in coming network 

traffic virtual computational resource. 

Vnet_out: normarlized out going network 

traffic of virtual computational resource. 

Vdisk_io: disk IO of virtual computational 

resource. 

Physical 

Resource 

Mcpu_util: CPU utilization of physical 

resource. 

Mmem_util: memory utilization of physical 

resource. 

Mmem_gps: normalized memory bandwidth 

of physical resource. 

Mnet_in: normarlized in coming network 

traffic of physical resource. 

Mnet_out: normarlized out going network 

traffic of physical resource. 

Mdisk_io: disk IO of physical resource. 

 

The pre-runtime attributes are available before workflow 

execution, which describes workflow tasks and their 

execution environments. In particular, every cloud resource 

is companied with its own ID, memory size, CPU’s cores 

and other attributes, and every task also has its own name 

and type. For a specific cloud resource or workflow task, its 

pre-runtime information is relatively fixed and uniquely 
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adhere to itself. The considered pre-runtime parameters and 

their details are listed in Table. 2. 

 
Table. 2 The considered pre-runtime parameters 

Type Runtime parameter and description 

Workflow 

Task 

T_name: name of a cloud workflow task. 

T_type: type of a cloud workflow task. 

Tplan_cpu: the needed CPU number of a cloud 

workflow task. 

Tpan_mem: the needed memory size of a 

cloud workflow task. 

Virtual 

Resource 

V_id: ID of virtual computational resource. 

Vcpu_request: CPU request of virtual 

computational resource. 

Vcpu_limit: CPU limit of virtual 

computational resource. 

Vmem_request: memory request of virtual 

computational resource. 

Physical 

Resource 

M_id: ID of physical resource. 

Mcpu_num: CPU number of physical 

resource.  

Mmem_size: memory size of physical 

resource. 

Mdisk_size: disk size of physical resource. 

 

2.2. Extreme gradient boosting(XGB) 

Recently, XGB outperforms in feature analysis prediction 

problem, especially in many machine learning competitions, 

such as those held by Kaggle. Comparing other tree models, 

XGB contains penalty term in its objective function, so that 

it can penalizes the complexity of the model to obtain better 

performance, its regularized objective is calculated as 

formula (1):  

    ˆ ,i i k

i k

L l y y f                       (1) 

where i  represents the i-th sample; l  is a differentiable 

convex loss function that measures the difference between 

the prediction 
iy


 and the target iy ; the second term   is the 

tree structure complexity, and another name is penalty term; 

kf represents the structure of the k-th classification and 

regression tree. The gain after split, which is used to 

evaluate the split candidates, is given by formula (2): 

     
2 2

2

1

2

L R

L R

i i ii I i I i I

split

i i ii I i I i I

g g g
G

h h h


  

  

  

 
 

      
 
 

  
  

  (2) 

where LI  and RI  are the sample sets  of left and right nodes 

after the split, and L RI I I   ; ig  and ih  are first and second 

order gradient statistics on the loss function;   is the penalty 

term, penalizing the adding new leaves;   is the regular 

term coefficient. 

The purpose of the XGB algorithm is to construct a bunch 

of classification and regression trees. That is, at each step of 

the algorithm, the point with the maximum gain which is 

greater than the threshold, is selected to be a splitting point, 

and then the splitting point is split to obtain a new tree. After 

the training is completed, in order to predict the score of a 

sample, the algorithm computes each tree according to the 

characteristics of the sample to get a score, and adds all 

scores to get the predicted value of the sample. 

2.3. The execution time prediction model 

In this section, we introduce the execution time prediction 

model. Its structure and workflow are shown in Fig. 1.  

 
Fig. 1 The procedure of our task execution time prediction model 

 

Among them, users initially request resources for their 

workflow on the cloud platform, and then provide different 

computing resources to meet their needs. For the arriving 

workflow, collect the pre-run parameters of its task and 

candidate computing resources, and record the 

corresponding run-time parameters and task execution time. 

Once the historical data of pre-run and runtime parameters 

are obtained, we input them into XGB to predict the 

execution time of workflow tasks through feature analysis. 

Because the execution time prediction based on feature 

analysis can fully reflect the influence of pre-run and run-

time parameters, we get a well-trained execution time 

prediction model and apply it into real-time scenarios to 

predict task execution time for users. In addition, the 

implementation details of our method are also outlined in 

the WTSFA algorithm, and its pseudo code corresponding to 

the above process is as follows: 
Algorithm: WTSFA Approach for Runtime Prediction 

Input: it  , A task of cloud workflow, 1 i n  ; 

      iv , A virtual resource where task it  is executed; 

      im , A physical resource where virtual resource iv  is 

virtualized; 

Output: The predicted task execution time set  P  , in 

which ip  is runtime time of it  hosted by iv  in 
im ; 

1.  D ← ,  S ← ,  P ← ; 

2. Sort all tasks it  in ascending order according to their 

execution start time, and get the sorting table T ; 

3. while there are unreached tasks do 

4. for each arriving 
it T  do 

5.      S ← collect pre-runtime parameters  

6.      D ← record runtime parameters  

7.     Import  D  and  S  to XGB to predict the 

execution time, and put the result to  P  

8. end for 

9. end while 

10. return  P  
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When cloud workflow task it  is reached, the reached 

moment is recorded as
isub . First of all, we extract the pre-

runtime parameters at 
isub  and the runtime parameters 

monitored before 
isub  of task it  , virtual resource 

iv  and 

physical resource
im . Secondly, the runtime and pre-runtime 

parameter set are fed to XGB to calculate the task execution 

time, so that the complexity and diversity of tasks, the 

heterogeneity of cloud resources and the impact from the 

dynamic characteristics of cloud environments can be fully 

considered. 

3.  Experimental Design and Result Analysis 

3.1. Data description 

The Pegasus workflow management system is employed to 

execute workflow in the cloud, so that the monitoring data, 

like the pre-runtime and runtime parameters as well as the 

corresponding execution time can be collected. Our 

experimental data is generated according to the Extensive 

Markup Language (XML) files of workflows in 

WorkflowSim. Three popular scientific workflows are 

considered: Epigenomics, Montage and CyberShake. In 

general, there are 12000 tasks for each workflow, which 

belong to different types with different number of tasks and 

execution times. The number of tasks for each type and the 

value range of its execution times are listed in the following 

tables, corresponding to their structures and XMLs in 

WorkflowSim. The structures of three workflows with small 

sizes are shown in Fig. 2, and detailed information of the 

generated data is summarized in Tables. 3-5. 

 
 

(a) Epigenomics                     (b) Montage 

 
(c) CyberShake 

Fig. 2 The considered workflows 

 

Table. 3 The information of generated tasks in the Epigenomics 

Task name Value(s) Task ID Number 

fastqSplit_chr21 (20, 100) 1 500 

filterContams_chr21 (0, 5) 2 2500 

sol2sanger_chr21 (0, 1.75) 3 2500 

fastq2bfq_chr21 (0, 3) 4 2500 

map_chr21 (1000, 27500) 5 2500 

mapMerge_chr21 (10, 25) 6 500 

maqindex_chr21 (0, 0.06) 7 500 

pileup_chr21 (1500, 5000) 8 500 

 

 

Table. 4 The information of generated tasks in the CyberShake 

Task name Value(s) Task ID Number 

ZipPSA (0, 4) 1 400 

ZipSeis (0, 10) 2 400 

ExtractSGT (60, 200) 3 800 

SeismogramSynthesis (20, 70) 4 5200 

PeakValCalcOkaya (0.6, 1.8) 5 5200 

 
Table. 5 The information of generated tasks in the Montage 

Task name Value(s) Task ID Number 

mProjectPP (11, 15) 1 2400 

mDiffFit (9, 13) 2 4320 

mConcatFit (0, 60) 3 480 

mBgModel (0, 100) 4 480 

mBackground (9.5, 12) 5 2400 

mImgTbl (0, 70) 6 480 

mAdd (0, 100) 7 480 

mShrink (0, 30) 8 480 

mJPEG (0, 3.5) 9 480 

As shown in the above tables, the value range of tasks’ 

execution time in each workflow can be classified into three 

groups, which are referred to the small, medium and large 

respectively. The small group includes tasks whose 

execution time’s upper bound is lower than 5, like 

sol2sanger_chr21 and maqindex_chr21 in Epigenomics 

workflows, ZipPSA and PeakValCalcOkaya in CyberShake 

workflows, and mJPEG in Montage workflow. The medium 

group reflects the tasks whose execution time is less than 60, 

such as mapMerge_chr21 in Epigenomics workflows, 

ZipSeis in CyberShake workflows, and mProjectPP in 

Montage workflows. The rest tasks belong to the large 

group, for example, map_chr21 in Epigenomics workflows, 

ExtractSGT in CyberShake workflows, and mBgModel in 

Montage workflows. Different groups of tasks may have 

different impact on the performance of execution time 

prediction methods, which will be examined in experiments. 

3.2. Experiment configuration 

In this section, the experiment configuration will be 

illustrated, including the experiment environment and the 

parameters of all the evaluated methods. Our internal cloud 

infrastructure is composed of a cloud, with three different 

physical servers, as listed in Table. 6. In order to guarantee 

a fair evaluation, we use similar virtual resource types for 

data generation, referring to those provided in the 

commercial cloud, as described in Table. 7. 

Table. 6 The information of the physical servers 

Sever CPU Memory Disk 

1 Intel Xeon E5-2637 V3 

3.5 GHz 4C*2 

64G 

DDR4*12 

1T SAS 3.5 

7.2K*2 

2 Intel Xeon E5-2620 V4 

2.1GHz 8C *2 

128G 

DDR4*12 

2T SAS 3.5 

7.2K*6 

3 Intel Xeon E5-2650 V4 

2.2GHz 12C*2 

128G 

DDR4*12 

4T SAS 3.5 

7.2K*2 

 
Table. 7 The generated virtual resources 

Virtual 

resource ID 
The reference vm

CPU  vm
Mem  

1 t2.small (EC2) 1 2 

2 t2.medium (EC2) 2 4 

3 t2.xlarge (EC2) 4 16 

4 t2.2xlarge (EC2) 8 32 



An XGB-based runtime prediction algorithm for cloud workflow tasks 

 

 

 

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021) 

Beijing, China, Oct. 31-Nov. 3, 2021 

 

5 

 

To provide a fair comparison among different hardware 

of cloud providers, we choose the same operating systems 

CentOS 7 (64-bit) for virtual resources, and the type1, type2, 

type3 as well as type4 of virtual resources correspond to 

t2.small, t2.medium, m4.xlarge and m4.2xlarge in Amazon 

EC2. Extensive experiments are conducted on Python 3.6.1, 

Anaconda 3 (64 bits) to evaluate the proposed task 

execution time prediction approach.  

We choose regression methods solely based on pre-

runtime or runtime parameters in this paper. It is difficult to 

compare our work with other research efforts, such as Chen 

J [9] and Yan G [10], since some of them need access to 

different applications and detailed hardware information, 

which are not the case for some of the considered workflow 

applications in this work. Secondly, most of these methods 

require more detailed hardware information, which is an 

unrealistic assumption for public clouds.  

Related work often uses three main regression algorithms: 

linear regression, neural networks, and regression trees. In 

this work, we use XGB. As mentioned earlier, XGB has 

been proved very successful in feature analysis and 

prediction. More specifically, we study a total of five 

different regression algorithms: bagging ridge (BR), 

random forest (RF) and AdaBoost (ADA). These methods 

are implemented by using the sklearn library. Table. 8 lists 

their adjustment parameters.  

3.3. Experimental results and analysis 

3.3.1. Root mean squared logarithmic error 

We present and discuss all the experimental results to verify 

the performance of our proposed approach in this work. 

Specially, instead of using the mean value of the obtained 

results of all tasks in the workflow, extra experiments for 

the whole workflows are also conducted, of which the 

compositions refer to XML files in WorkflowSim. And 10-

fold cross-validation is used, meanwhile every experiment 

is repeated 10 times. 

Table. 8 Parameters of the adopted Regression Algorithms 

Algorithm Parameters 

BR 
alpha = 10, base_estimator = ridge, n_estimators 

= 50 

RF n_estimators = 100, max_features =7 

ADA n_estimators = 100 

XGB 

max_depth =9, n_estimators=100, learning_rate 

=0.08, subsample=0.85, reg_lambda=0.19, feval 

= root mean squared logarithmic error 

    Assuming  m  is the number of output values, i.e., the 

number of the task, the Root Mean Square Logarithm Error 

(RMSLE) is recorded and can be calculated as follows: 

 
2

1

m

i i

i

RMSLE y y




 
  

 
       

Once the runtime parameters are updated, the feature 

analysis can be conducted. Here, XGB is exploited and 

compared with RF, BR and ADA. All these ML-based 

methods are ensemble ones, which perform well in feature 

analysis-based prediction problems. Their RMSLE values 

are compared in Figs. 3-5 and the corresponding analysis is 

followed.  

 
Fig. 3 RMSLE comparisons over the subtasks in Epigenomics 

workflows  

 
Fig. 4 RMSLE comparisons over the subtasks in CyberShake 

workflows  

 
Fig. 5 RMSLE comparisons over the subtasks in Montage 

workflows 
From these figures, it is found that the RMSLE curves of 

XGB are always at the bottom, indicating the superiority of 

XGB over the other three methods. The possible reason is 

as follows. When comparing with RF and ADA, pruning 

naturally occurs during the leaf node splitting process of 

XGB. And it is well known that, pruning helps trees 

improve the generalization ability. For BR, its weakness is 

strongly presented in the predictions of Montage, since its 

base learner is Ridge, which may fail when there is a high 

collinearity between characteristic variables, such as the 

functional relationship between variables X1 and X2. In a 

word, XGB performs well resulting from its pruning 

operations.  

3.3.2. Elapsed time 

Additionally, elapsed time of different methods are also 

compared, the same with the previous prediction part, as 

shown in Figs. 6-8. 
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Fig. 6 Elapsed time comparisons over the subtasks in 

Epigenomics workflows 
 

 
Fig. 7 Elapsed time comparisons over the subtasks in 

CyberShake workflows 

 
Fig. 8 Elapsed time comparisons over the subtasks in Montage 

workflows 

 

Focusing on the elapsed time comparisons, the time of 

XGB is not the least one in all cases, but it always maintains 

a relatively low level. Comparing with other ensemble 

methods, the elapsed time of XGB changes much less, 

illustrating that XGB is stable in computation, and on the 

other hand, XGB’s  parallel computing operations help it 

keeps an average computational cost. Combining with the 

previous RMSLE analysis, we can find that, XGB obtains 

the best prediction result without increasing time overhead. 

These results demonstrate the effectiveness of XGB in tasks 

execution time prediction for cloud workflows, which is 

based on feature analysis. 

4. Conclusions and Future Work 

The task execution time estimation has a significant impact 

on workflow scheduling and resource allocation in the cloud. 

In this paper, aiming to predict the task execution time for 

workflows, we propose an XGB-based  runtime prediction 

method for cloud workflow tasks. First, we analyze the 

influencing factors, like CPU, Memory and bandwidth, and 

pre-process these data to construct our datasets. Then, we 

establish a feature analysis-based model by using XGB to 

realize task runtime prediction. Experimental results show 

that the proposed algorithm is superior to the existing peers 

in the accuracy of task runtime prediction, and RMSLE and 

running time. Especially in RMSLE, compared with other 

algorithms, XGB's leaf node splitting process prunes 

naturally, which improves the generalization ability of the 

tree. Therefore, it has higher computation efficiency. 

As future work, we plan to study how the relationship 

between workflow tasks (such as data transmission and 

dependencies), and the tasks’ category attributes affect their 

execution time. For improving the performance of runtime 

prediction for workflow tasks, more latest and effective 

machine learning methods will be further studied and 

leveraged. In addition, we intend to apply this prediction 

method to workflow scheduling for improving the 

operability of scheduling solutions in the real application 

scenarios. 
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