
An XGB-based runtime prediction algorithm for cloud workflow tasks

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021)

Beijing, China, Oct. 31-Nov. 3, 2021

1

Abstract. Cloud Computing and workflows provide a

good deployment and execution environment for

scientific applications, but effective scientific

workflow management depends on the estimation of

task execution time to a great extent. However, due to

the diversity of task inputs, the heterogeneity of

resources and the high dynamics of cloud

environments, as the basis of task scheduling and

resource allocation in cloud computing, the task

runtime estimation still faces great challenges. In this

paper, we propose an XGB (Extreme Gradient

Boosting)-based workflow task runtime prediction

method to mine the relationship between task runtime

and its static and dynamic influencing factors through

feature analysis to finally result in a prediction model

for online use. To verify the effectiveness of our

algorithm, a series of experiments are conducted over

three real scientific workflow applications, and the

experimental results show that the proposed method

is superior to the existing algorithms in task runtime

prediction accuracy.

Keywords: Cloud Computing; Workflows; Execution

Time Prediction; Feature Analysis; XGB

1. Introduction

The cloud computing provides scientists with great

advantages for hosting and deploying their scientific

applications in a fast and cost-effective way, like elastic

resource scaling, rapid and on-demand resource

provisioning as well as pay-per-use pricing scheme [1].

These benefits drive scientists to migrate their large-scale

applications to the cloud and use workflow to manage its

execution [2]. These scientific applications are usually

data-intensive or resource-intensive, involve a large

number of computing tasks, and can be described as

Directed Acyclic Graphs (DAGs), where nodes represent

tasks, and directed edges denote inter-task data or control

dependencies. Since scientific workflow applications are

often time-consuming and resource-intensive, the key to

manage them efficiently is to optimize its execution time

and resource usage so as to reduce their renting cost for

the cloud. These goals can be achieved by optimization

algorithms, such as scheduling or resource provisioning,

i.e., selecting the most suitable resource for each

workflow task respectively to minimize the makespan

and execution cost for the whole workflow. But

scheduling or resource provisioning technologies need

related information about the runtime of workflow tasks

to match an appropriate and best set of resources for all

the workflow tasks. Hence, estimating runtime for

workflow tasks is essential and critical, particularly in the

dynamic and cost-centric cloud environment [3].

Accurate runtime estimation for workflow tasks, can

enhance the enforceability of scheduling solutions and

effectiveness of scheduling algorithms, on the other hand,

can improve the utilization rate of cloud resources [4],

and eventually increase the customer Quality of Service

(QoS) as well as the competitiveness of cloud data

centers or Cloud Service Providers (CSPs) [5].

However, most of the previous work is based on

traditional methods, and more or less ignores the

dynamic characteristics of the cloud, such as statistical

description [6], similarity analysis [7] and distribution

function [8]. For regression and classification problems,

machine learning (ML) based methods are considered to

be the most advanced and potential solution. It learns the

relationship between a set of inputs and their related

outputs through an in-depth observation of the

characteristics of corresponding data. In order to capture

more attributes that may affect the execution time of

cloud workflow tasks, a machine learning method is

adopted to provide a better solution by characterizing the

dynamic changes in tasks, other static factors and cloud

performance. There are three methods to apply machine

learning methods to the runtime prediction of workflow

tasks in the cloud: (1) time series, (2) feature analysis,

and (3) the combination of time series and feature

analysis.
For the time series related methods, the execution time

of workflow tasks is predicted based on the time series

records of previous tasks and their influencing factors.

Chen J et al. [9] developed a runtime prediction method,

in which some potential periodic patterns were identified

from a large amount of time series data and the
attenuation factors were introduced to control the

influence of different time periods. Yan G et al. [10]

found that the short-term contributes greater to prediction

than the long-term for time series data, so they selected

the neighborhood of time series through a local trend to

predict the runtime for workflow tasks. Tran N et al. [11]

proposed a multivariable runtime prediction method by

using fuzzy technology, which considers the dynamic

changes of tasks, cloud resource performance and other
time factors comprehensively.

However, in a cloud like IaaS, due to the heterogeneity

brought by resource provision and the performance

Jingwei HUANG 1, Huifang LI 1, Yizhu WANG 1, Lingguo CUI 1

1 School of Automation, Beijing Institute of Technology, Beijing 100081, China

E-mail: 931648295@qq.com; huifang@bit.edu.cn; wangyizhu1206cuc@163.com; cuilingguo@bit.edu.cn

 An XGB-based runtime prediction algorithm for

cloud workflow tasks

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021)

Beijing, China, Oct. 31-Nov. 3, 2021

2

differences resulting from resource configurations, for

the same workflow task, different resource allocation

may lead to different execution times. Predicting task

execution time only based on time series is difficult to

provide enough accurate execution time prediction for

workflow tasks in the cloud. To capture the attributes of

tasks, applications and resources that affect the change of

task execution time, the second type of time prediction

based on feature analysis is developed. This category

requires workflow application properties, such as input

data and application parameters, as well as specific

details of cloud resources and cloud environment, such

as the CPU, memory and bandwidth. Silva R F D et al.

[12] estimated task execution time by analyzing the

impact of fine-grained information such as I/O, memory

and CPU on task execution time for cloud workflows.
Pham T P et al. [13] proposed a two-stage prediction

method which achieved better results than the prior

single-stage ones, by taking pre-runtime parameters,

such as provenance and resource features obtained from

benchmark, and the fine-grained information defined as

runtime parameters into account.

Although these feature analysis methods consider the

complexity from the diversity of tasks and the

heterogeneity of cloud resources, they cannot grasp the

dynamic characteristics of the cloud computing

environment, such as network bandwidth, time change

and other factors affecting task execution time. This is

not applicable to real-time scenes that need to process a

large amount of data and deal with the performance

changes of cloud resources at the same time.

 To predict task execution time, we consider its

influencing factors comprehensively in cloud workflows

from 3 aspects, i.e., virtual resources, and static & dynamic

attributes related to physical resources, then construct an

XGB-based prediction model by combining the runtime and

pre-runtime parameters together to realize more precision

prediction.

2. Proposed Method

In this section, we first introduce the cloud workflow in

Section 2.1, then briefly introduce the XGB algorithm in

Section 2.2, and finally introduce our time prediction model

based on XGB in Section 2.3.

2.1. Cloud workflows

With the increasingly mature and widespread application of

cloud computing, more and more scientists execute their

complex scientific computing processes in the cloud, that is,

scientific applications or cloud workflows. A workflow

application can be modeled as a task-on-node DAG

(,)W T E , in which  1 2, , , nT t t t is the set of tasks and

  , | , ,i j i jE t t t T t T i j    is the set of edges. Each edge

(
it ,

jt) denotes the dependencies between task
it and its

successor
jt in the workflow. Hence, task

jt can be

executed only after task
it has completed execution and the

associated data or file resulting from
it have been

transferred to
jt . Usually, the definition and execution of a

workflow are accomplished by the workflow management

system, and we assume that each task can be processed on

one or several rented resources, e.g., virtual machines.

The complexity of tasks and the heterogeneity of cloud

resources may lead to different execution times. Please note

that workflow tasks differ in their instruction lengths, inputs

and outputs, while virtual and physical resources have

different configurations, such as disk, memory and CPU. In

addition to the static (pre-run) factors available before task

execution, runtime variables (such as network speed and

disk I / O) that can only be obtained during task execution

also affect task calculation time. The combination of pre-run

and runtime attributes can obviously provide better

execution evaluations and enhance the prediction accuracy.

As mentioned above, the complexity of tasks and the

dynamic characteristics of cloud influence task execution

time. Some attributes can be obtained before execution,

while the others can only be collected during execution.

Tasks are continuously monitored in cloud data centers, so

that their resource consumptions can be recorded, and the

usage of different resources such as CPU, memory, and I/O

are captured. These time-series records are stored in a

monitoring database, which need to be updated and are later

used to estimate task execution time. And the considered

runtime attributes are detailed in Table. 1.

Table. 1 The considered runtime parameters

Type Runtime parameter and description

Workflow

Task

Start time: start moment of task execution.

End time: end moment of task execution.

Tcpu_avg: average CPU used by the task.

Tcpu_max: max CPU used by the task.

Tmem_avg: average memory used by the task.

Tmem_max: max memory used by the task.

Virtual

Resource

Vcpu_util: CPU utilization of virtual

computational resource.

Vmem_util: memory utilization of virtual

computational resource.

Vmem_gps: normalized memory bandwidth of

virtual computational resource.

Vnet_in: normarlized in coming network

traffic virtual computational resource.

Vnet_out: normarlized out going network

traffic of virtual computational resource.

Vdisk_io: disk IO of virtual computational

resource.

Physical

Resource

Mcpu_util: CPU utilization of physical

resource.

Mmem_util: memory utilization of physical

resource.

Mmem_gps: normalized memory bandwidth

of physical resource.

Mnet_in: normarlized in coming network

traffic of physical resource.

Mnet_out: normarlized out going network

traffic of physical resource.

Mdisk_io: disk IO of physical resource.

The pre-runtime attributes are available before workflow

execution, which describes workflow tasks and their

execution environments. In particular, every cloud resource

is companied with its own ID, memory size, CPU’s cores

and other attributes, and every task also has its own name

and type. For a specific cloud resource or workflow task, its

pre-runtime information is relatively fixed and uniquely

An XGB-based runtime prediction algorithm for cloud workflow tasks

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021)

Beijing, China, Oct. 31-Nov. 3, 2021

3

adhere to itself. The considered pre-runtime parameters and

their details are listed in Table. 2.

Table. 2 The considered pre-runtime parameters

Type Runtime parameter and description

Workflow

Task

T_name: name of a cloud workflow task.

T_type: type of a cloud workflow task.

Tplan_cpu: the needed CPU number of a cloud

workflow task.

Tpan_mem: the needed memory size of a

cloud workflow task.

Virtual

Resource

V_id: ID of virtual computational resource.

Vcpu_request: CPU request of virtual

computational resource.

Vcpu_limit: CPU limit of virtual

computational resource.

Vmem_request: memory request of virtual

computational resource.

Physical

Resource

M_id: ID of physical resource.

Mcpu_num: CPU number of physical

resource.

Mmem_size: memory size of physical

resource.

Mdisk_size: disk size of physical resource.

2.2. Extreme gradient boosting(XGB)

Recently, XGB outperforms in feature analysis prediction

problem, especially in many machine learning competitions,

such as those held by Kaggle. Comparing other tree models,

XGB contains penalty term in its objective function, so that

it can penalizes the complexity of the model to obtain better

performance, its regularized objective is calculated as

formula (1):

    ˆ ,i i k

i k

L l y y f    (1)

where i represents the i-th sample; l is a differentiable

convex loss function that measures the difference between

the prediction
iy


 and the target iy ; the second term  is the

tree structure complexity, and another name is penalty term;

kf represents the structure of the k-th classification and

regression tree. The gain after split, which is used to

evaluate the split candidates, is given by formula (2):

     
2 2

2

1

2

L R

L R

i i ii I i I i I

split

i i ii I i I i I

g g g
G

h h h


  

  

  

 
 

      
 
 

  
  

 (2)

where LI and RI are the sample sets of left and right nodes

after the split, and L RI I I  ; ig and ih are first and second

order gradient statistics on the loss function;  is the penalty

term, penalizing the adding new leaves;  is the regular

term coefficient.

The purpose of the XGB algorithm is to construct a bunch

of classification and regression trees. That is, at each step of

the algorithm, the point with the maximum gain which is

greater than the threshold, is selected to be a splitting point,

and then the splitting point is split to obtain a new tree. After

the training is completed, in order to predict the score of a

sample, the algorithm computes each tree according to the

characteristics of the sample to get a score, and adds all

scores to get the predicted value of the sample.

2.3. The execution time prediction model

In this section, we introduce the execution time prediction

model. Its structure and workflow are shown in Fig. 1.

Fig. 1 The procedure of our task execution time prediction model

Among them, users initially request resources for their

workflow on the cloud platform, and then provide different

computing resources to meet their needs. For the arriving

workflow, collect the pre-run parameters of its task and

candidate computing resources, and record the

corresponding run-time parameters and task execution time.

Once the historical data of pre-run and runtime parameters

are obtained, we input them into XGB to predict the

execution time of workflow tasks through feature analysis.

Because the execution time prediction based on feature

analysis can fully reflect the influence of pre-run and run-

time parameters, we get a well-trained execution time

prediction model and apply it into real-time scenarios to

predict task execution time for users. In addition, the

implementation details of our method are also outlined in

the WTSFA algorithm, and its pseudo code corresponding to

the above process is as follows:
Algorithm: WTSFA Approach for Runtime Prediction

Input: it , A task of cloud workflow, 1 i n  ;

 iv , A virtual resource where task it is executed;

 im , A physical resource where virtual resource iv is

virtualized;

Output: The predicted task execution time set  P , in

which ip is runtime time of it hosted by iv in
im ;

1.  D ← ,  S ← ,  P ← ;

2. Sort all tasks it in ascending order according to their

execution start time, and get the sorting table T ;

3. while there are unreached tasks do

4. for each arriving
it T do

5.  S ← collect pre-runtime parameters

6.  D ← record runtime parameters

7. Import  D and  S to XGB to predict the

execution time, and put the result to  P

8. end for

9. end while

10. return  P

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021)

Beijing, China, Oct. 31-Nov. 3, 2021

4

When cloud workflow task it is reached, the reached

moment is recorded as
isub . First of all, we extract the pre-

runtime parameters at
isub and the runtime parameters

monitored before
isub of task it , virtual resource

iv and

physical resource
im . Secondly, the runtime and pre-runtime

parameter set are fed to XGB to calculate the task execution

time, so that the complexity and diversity of tasks, the

heterogeneity of cloud resources and the impact from the

dynamic characteristics of cloud environments can be fully

considered.

3. Experimental Design and Result Analysis

3.1. Data description

The Pegasus workflow management system is employed to

execute workflow in the cloud, so that the monitoring data,

like the pre-runtime and runtime parameters as well as the

corresponding execution time can be collected. Our

experimental data is generated according to the Extensive

Markup Language (XML) files of workflows in

WorkflowSim. Three popular scientific workflows are

considered: Epigenomics, Montage and CyberShake. In

general, there are 12000 tasks for each workflow, which

belong to different types with different number of tasks and

execution times. The number of tasks for each type and the

value range of its execution times are listed in the following

tables, corresponding to their structures and XMLs in

WorkflowSim. The structures of three workflows with small

sizes are shown in Fig. 2, and detailed information of the

generated data is summarized in Tables. 3-5.

(a) Epigenomics (b) Montage

(c) CyberShake

Fig. 2 The considered workflows

Table. 3 The information of generated tasks in the Epigenomics

Task name Value(s) Task ID Number

fastqSplit_chr21 (20, 100) 1 500

filterContams_chr21 (0, 5) 2 2500

sol2sanger_chr21 (0, 1.75) 3 2500

fastq2bfq_chr21 (0, 3) 4 2500

map_chr21 (1000, 27500) 5 2500

mapMerge_chr21 (10, 25) 6 500

maqindex_chr21 (0, 0.06) 7 500

pileup_chr21 (1500, 5000) 8 500

Table. 4 The information of generated tasks in the CyberShake

Task name Value(s) Task ID Number

ZipPSA (0, 4) 1 400

ZipSeis (0, 10) 2 400

ExtractSGT (60, 200) 3 800

SeismogramSynthesis (20, 70) 4 5200

PeakValCalcOkaya (0.6, 1.8) 5 5200

Table. 5 The information of generated tasks in the Montage

Task name Value(s) Task ID Number

mProjectPP (11, 15) 1 2400

mDiffFit (9, 13) 2 4320

mConcatFit (0, 60) 3 480

mBgModel (0, 100) 4 480

mBackground (9.5, 12) 5 2400

mImgTbl (0, 70) 6 480

mAdd (0, 100) 7 480

mShrink (0, 30) 8 480

mJPEG (0, 3.5) 9 480

As shown in the above tables, the value range of tasks’

execution time in each workflow can be classified into three

groups, which are referred to the small, medium and large

respectively. The small group includes tasks whose

execution time’s upper bound is lower than 5, like

sol2sanger_chr21 and maqindex_chr21 in Epigenomics

workflows, ZipPSA and PeakValCalcOkaya in CyberShake

workflows, and mJPEG in Montage workflow. The medium

group reflects the tasks whose execution time is less than 60,

such as mapMerge_chr21 in Epigenomics workflows,

ZipSeis in CyberShake workflows, and mProjectPP in

Montage workflows. The rest tasks belong to the large

group, for example, map_chr21 in Epigenomics workflows,

ExtractSGT in CyberShake workflows, and mBgModel in

Montage workflows. Different groups of tasks may have

different impact on the performance of execution time

prediction methods, which will be examined in experiments.

3.2. Experiment configuration

In this section, the experiment configuration will be

illustrated, including the experiment environment and the

parameters of all the evaluated methods. Our internal cloud

infrastructure is composed of a cloud, with three different

physical servers, as listed in Table. 6. In order to guarantee

a fair evaluation, we use similar virtual resource types for

data generation, referring to those provided in the

commercial cloud, as described in Table. 7.

Table. 6 The information of the physical servers

Sever CPU Memory Disk

1 Intel Xeon E5-2637 V3

3.5 GHz 4C*2

64G

DDR4*12

1T SAS 3.5

7.2K*2

2 Intel Xeon E5-2620 V4

2.1GHz 8C *2

128G

DDR4*12

2T SAS 3.5

7.2K*6

3 Intel Xeon E5-2650 V4

2.2GHz 12C*2

128G

DDR4*12

4T SAS 3.5

7.2K*2

Table. 7 The generated virtual resources

Virtual

resource ID
The reference vm

CPU vm
Mem

1 t2.small (EC2) 1 2

2 t2.medium (EC2) 2 4

3 t2.xlarge (EC2) 4 16

4 t2.2xlarge (EC2) 8 32

An XGB-based runtime prediction algorithm for cloud workflow tasks

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021)

Beijing, China, Oct. 31-Nov. 3, 2021

5

To provide a fair comparison among different hardware

of cloud providers, we choose the same operating systems

CentOS 7 (64-bit) for virtual resources, and the type1, type2,

type3 as well as type4 of virtual resources correspond to

t2.small, t2.medium, m4.xlarge and m4.2xlarge in Amazon

EC2. Extensive experiments are conducted on Python 3.6.1,

Anaconda 3 (64 bits) to evaluate the proposed task

execution time prediction approach.

We choose regression methods solely based on pre-

runtime or runtime parameters in this paper. It is difficult to

compare our work with other research efforts, such as Chen

J [9] and Yan G [10], since some of them need access to

different applications and detailed hardware information,

which are not the case for some of the considered workflow

applications in this work. Secondly, most of these methods

require more detailed hardware information, which is an

unrealistic assumption for public clouds.

Related work often uses three main regression algorithms:

linear regression, neural networks, and regression trees. In

this work, we use XGB. As mentioned earlier, XGB has

been proved very successful in feature analysis and

prediction. More specifically, we study a total of five

different regression algorithms: bagging ridge (BR),

random forest (RF) and AdaBoost (ADA). These methods

are implemented by using the sklearn library. Table. 8 lists

their adjustment parameters.

3.3. Experimental results and analysis

3.3.1. Root mean squared logarithmic error

We present and discuss all the experimental results to verify

the performance of our proposed approach in this work.

Specially, instead of using the mean value of the obtained

results of all tasks in the workflow, extra experiments for

the whole workflows are also conducted, of which the

compositions refer to XML files in WorkflowSim. And 10-

fold cross-validation is used, meanwhile every experiment

is repeated 10 times.

Table. 8 Parameters of the adopted Regression Algorithms

Algorithm Parameters

BR
alpha = 10, base_estimator = ridge, n_estimators

= 50

RF n_estimators = 100, max_features =7

ADA n_estimators = 100

XGB

max_depth =9, n_estimators=100, learning_rate

=0.08, subsample=0.85, reg_lambda=0.19, feval

= root mean squared logarithmic error

 Assuming m is the number of output values, i.e., the

number of the task, the Root Mean Square Logarithm Error

(RMSLE) is recorded and can be calculated as follows:

2

1

m

i i

i

RMSLE y y




 
  

 
 

Once the runtime parameters are updated, the feature

analysis can be conducted. Here, XGB is exploited and

compared with RF, BR and ADA. All these ML-based

methods are ensemble ones, which perform well in feature

analysis-based prediction problems. Their RMSLE values

are compared in Figs. 3-5 and the corresponding analysis is

followed.

Fig. 3 RMSLE comparisons over the subtasks in Epigenomics

workflows

Fig. 4 RMSLE comparisons over the subtasks in CyberShake

workflows

Fig. 5 RMSLE comparisons over the subtasks in Montage

workflows
From these figures, it is found that the RMSLE curves of

XGB are always at the bottom, indicating the superiority of

XGB over the other three methods. The possible reason is

as follows. When comparing with RF and ADA, pruning

naturally occurs during the leaf node splitting process of

XGB. And it is well known that, pruning helps trees

improve the generalization ability. For BR, its weakness is

strongly presented in the predictions of Montage, since its

base learner is Ridge, which may fail when there is a high

collinearity between characteristic variables, such as the

functional relationship between variables X1 and X2. In a

word, XGB performs well resulting from its pruning

operations.

3.3.2. Elapsed time

Additionally, elapsed time of different methods are also

compared, the same with the previous prediction part, as

shown in Figs. 6-8.

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021)

Beijing, China, Oct. 31-Nov. 3, 2021

6

Fig. 6 Elapsed time comparisons over the subtasks in

Epigenomics workflows

Fig. 7 Elapsed time comparisons over the subtasks in

CyberShake workflows

Fig. 8 Elapsed time comparisons over the subtasks in Montage

workflows

Focusing on the elapsed time comparisons, the time of

XGB is not the least one in all cases, but it always maintains

a relatively low level. Comparing with other ensemble

methods, the elapsed time of XGB changes much less,

illustrating that XGB is stable in computation, and on the

other hand, XGB’s parallel computing operations help it

keeps an average computational cost. Combining with the

previous RMSLE analysis, we can find that, XGB obtains

the best prediction result without increasing time overhead.

These results demonstrate the effectiveness of XGB in tasks

execution time prediction for cloud workflows, which is

based on feature analysis.

4. Conclusions and Future Work

The task execution time estimation has a significant impact

on workflow scheduling and resource allocation in the cloud.

In this paper, aiming to predict the task execution time for

workflows, we propose an XGB-based runtime prediction

method for cloud workflow tasks. First, we analyze the

influencing factors, like CPU, Memory and bandwidth, and

pre-process these data to construct our datasets. Then, we

establish a feature analysis-based model by using XGB to

realize task runtime prediction. Experimental results show

that the proposed algorithm is superior to the existing peers

in the accuracy of task runtime prediction, and RMSLE and

running time. Especially in RMSLE, compared with other

algorithms, XGB's leaf node splitting process prunes

naturally, which improves the generalization ability of the

tree. Therefore, it has higher computation efficiency.

As future work, we plan to study how the relationship

between workflow tasks (such as data transmission and

dependencies), and the tasks’ category attributes affect their

execution time. For improving the performance of runtime

prediction for workflow tasks, more latest and effective

machine learning methods will be further studied and

leveraged. In addition, we intend to apply this prediction

method to workflow scheduling for improving the

operability of scheduling solutions in the real application

scenarios.

Acknowledgements

This work is supported in part by the National Natural

Science Foundation of China under Grant No. 61836001;

and in part by the National Key Research and Development

Program of China under Grant No. 2018YFB1003700.

References

[1] Sahni J, Vidyarthi D. A Cost-Effective Deadline-Constrained Dynamic

Scheduling Algorithm for Scientific Workflows in a Cloud Environment.
IEEE Transactions on Cloud Computing, 2018, 6(1): 2-17.

[2] Deelman E, Gannon D, Shields M, et al. Workflows and e-Science: An

overview of workflow system features and capabilities. Future Generation
Computer Systems, 2009, 25(5): 528-540.

[3] Rodriguez M A, Buyya R. Deadline Based Resource Provisioning and

Scheduling Algorithm for Scientific Workflows on Clouds. IEEE
Transactions on Cloud Computing, 2014, 2(2): 222-235.

[4] Wang X, Cao B, Hou C, et al. Scheduling Budget Constrained Cloud

Workflows with Particle Swarm Optimization. IEEE Conference on
Collaboration and Internet Computing. IEEE, 2016: 219-226.

[5] Abrishami S S, Naghibzadeh M M, Epema D D. Deadline-constrained

workflow scheduling algorithms for Infrastructure as a Service Clouds.
Future Generation Computer Systems, 2013, 29(1): 158-169.

[6] Chirkinab A M, Kovalchuka S V. Towards Better Workflow Execution

Time Estimation. International Conference on Future Information
Engineering, 2014: 216-223.

[7] Pietri I, Juve G, Deelman E, et al. A Performance Model to Estimate

Execution Time of Scientific Workflows on the Cloud. Workshop on
Workflows in Support of Large-scale Science. IEEE, 2014: 11-19.

[8] Chirkin A M, Belloum A S Z, Kovalchuk S V, et al. Execution Time

Estimation for Workflow Scheduling. IEEE 9th Workshop on Workflows
in Support of Large-Scale Science. 2014: 1-10.

[9] Chen J, Li K, Rong H, et al. A Periodicity-based Parallel Time Series

Prediction Algorithm in Cloud Computing Environments. Information
Sciences, 2018: 1-32.

[10]Yan G, Jia S, Ding J, et al. A Time Series Forecasting based on Cloud

Model Similarity Measurement. Soft Computing, 2018, 1-12.
[11]Tran N, Nguyen T, Nguyen B M. A Multivariate Fuzzy Time Series

Resource Forecast Model for Clouds using LSTM and Data Correlation

Analysis. International Conference on Knowledge-Based and Intelligent
Information & Engineering Systems. 2018, 636-645.

[12]Silva R F D, Juve G, Rynge M, et al. Online Task Resource

Consumption Prediction for Scientific Workflows. Parallel Processing
Letters, 2015, 25(3): 2-26.

[13]Pham T P, Durillo J J, Fahringer T. Predicting Workflow Task

Execution Time in the Cloud using A Two-Stage Machine Learning
Approach. IEEE Transactions on Cloud Computing, 2017, 1-13.

