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Abstract. With the development of measurement 

techniques, massive data have been recorded from 

real-world systems, and partitioning these data can 

provide important information and useful references. 

In this paper, a new clustering method named GPR-

FCM is proposed to accomplish this work. The 

proposed clustering method is developed based on 

fuzzy c-means algorithm. The regression relationship 

of data instead of the distance among the objects is 

utilized to evaluate the difference between the clusters, 

and Gaussian process regression (GPR) is used to 

evaluate the regression relationship of each cluster. A 

series of experiments on synthetic and engineering 

datasets are used to evaluate the performance of the 

GPR-FCM method. The results demonstrate higher 

effectiveness and advantages of the GPR-FCM 

method compared with conventional data clustering 

algorithms. 
 

Keywords: Data clustering, fuzzy c-means algorithm, 

Gaussian process regression 
 

1.   INTRODUCTION 

With the development of cyber-physical systems and 

measurement techniques, massive in-situ data of real-

world systems are recorded. However, the patterns of 

these in-situ data are usually different, so it is necessary 

to partition them such that the characteristics of data in 

the same part are similar than those in the other parts. 

Data clustering is a mature tool to solve this issue. Data 

clustering is a class of data mining techniques that has 

been widely used in data analysis such as fault detection, 

image recognition, modal analysis, and risk analysis [1-

3]. It is the task of finding natural partitioning within a 

dataset such that patterns within the same cluster are 

more similar than those within different clusters. Fuzzy 

c-means algorithm (FCM) is one of the most popular 

clustering methods. FCM clusters data according to their 

spatial distribution, and the spatial distribution of real-

world data of different clusters is often very similar. Thus, 

it is necessary to utilize other patterns to improve the data 

clustering accuracy of FCM. For real-world systems, the 

regression relationship of in-situ data often varies greatly, 

which has considerable potentiality to improve the 

clustering validity. Thus, the clustering method based on 

the regression relationship of data is with great potential 

to realize the accurate data clustering results. The key 

step of data clustering based on the regression 

relationship is the evaluation method of regression 

relationship. In recent years, Gaussian process regression 

(GPR) has been widely used to describe the regression 

relationship of data [4]. Kumar et al. [5] used Gaussian 

process regression to model the regression relationship 

between the elastic modulus of jointed rock mass and the 

other six geological parameters. Pasolli et al. [6] utilized 

Gaussian process regression to estimate the chlorophyll 

concentration in subsurface water. Liu et al. [7] used 

Gaussian process regression to learn the degradation 

pattern of a lithium battery system based on the historical 

data and to predict its remaining useful life. Celaya et al. 

[8] collected the run-to-failure data of metal oxide field 

effect transistor (MOSFET) and used Gaussian process 

regression to build the failure model of MOSFET. Ocak 

[9] used Gaussian process regression to study the effect 

of operation parameters of a tunnel boring machine on 

the surface settlements. Hewing [10] proposed a model 

predictive control approach that integrates a nominal 

system with an additive nonlinear part of the dynamics 

model using Gaussian process regression. Zeng [11] used 

Gaussian process regression to predict the building 

electricity usage based on the large-scale real data 

collected from the building energy management system. 

Parveen [12] used Gaussian process regression to model 

the infiltration of sandy soil and compared its prediction 

performance between Pearson VII and radial based 

kernel function. Yun [13] proposed a novel methodology 

for predicting human gait pattern kinematics based on 

Gaussian process regression. The above-mentioned 

works indicate Gaussian process regression can 

effectively learn the regression relationship of data. 

Therefore, Gaussian process regression is utilized to 

evaluate the regression relationship of each cluster in this 

paper, and a new clustering method based on Gaussian 

process regression is proposed. 

The rest of this paper is organized as follows. Section 2 

describes the background of FCM and GPR, and Section 

3 introduces the proposed clustering method. In Section 

4, synthetic datasets are used to test and compare the 

performance of the proposed method with three 

conventional clustering algorithms FCM, K-means and 

Expectation-Maximization algorithm (EM). Two 

engineering datasets are used to validate the proposed 

clustering method in Section 5. Some conclusions are 

given in Section 6. 
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2.  BACKGROUND 

2.1. Fuzzy c-means Algorithm 

Fuzzy c-means algorithm partitions a given set of 

object data {𝒙1, 𝒙2, ..., 𝒙𝑛} ⊂ ℝ𝑑×𝑛 into c fuzzy clusters 

by minimizing an objective function 𝐽(𝐔, 𝐕) as follows: 

𝐽(𝐔, 𝐕) =  ∑ ∑ 𝑢𝑖𝑘
𝑚‖𝒙𝑘 − 𝒗𝑖‖2

2𝑛
𝑘=1

𝑐
𝑖=1            (1) 

where 𝒙𝑘  = [𝑥1,𝑘 , 𝑥2,𝑘 , . . . , 𝑥𝑗,𝑘 , … , 𝑥𝑑,𝑘]T  is an object 

datum, and 𝑥𝑗,𝑘 is the 𝑗-th attribute value of 𝒙𝑘; 𝒗𝑖 is the 

𝑖-th cluster prototype, and let matrix of cluster prototypes 

𝐕 =  [𝒗1, 𝒗2, . . . , 𝒗𝑐]T ∈ ℝ𝑐×𝑑 ; 𝑚  is a fuzzification 

parameter, 𝑚 ∈ (1, ∞ ); ‖ ∙ ‖2  denotes the Euclidean 

norm in ℝ𝑑 ; 𝑢𝑖𝑘  is the membership that represents the 

degree which 𝒙𝑘 belongs to the 𝑖-th cluster and satisfies 

the following condition: 

∑ 𝑢𝑖𝑘 = 1𝑐
𝑖=1  (𝑘 = 1, 2, … , 𝑛; ∀𝑖, 𝑘: 𝑢𝑖𝑘 ∈ [0,1])  (2) 

and let partition matrix 𝐔= [𝑢𝑖𝑘]∈ ℝc×n. 

The necessary conditions for minimizing (1) with the 

constraint (2) result in the following iterative update 

formulas for the prototypes and the partition matrix [14]: 

𝒗𝑖 =  
∑ 𝑢𝑖𝑘

𝑚𝒙𝑘
𝑛
𝑘=1

∑ 𝑢𝑖𝑘
𝑚𝑛

𝑘=1

(𝑖 = 1, . . . , 𝑐)                    (3) 

𝑢𝑖𝑘 = [∑ (
‖𝒙𝑘−𝒗𝑖‖2

2

‖𝒙𝑘−𝒗𝑡‖2
2)

2

𝑚−1𝑐
𝑡=1 ]

−1

(𝑖 = 1, . . . , 𝑐; 𝑘 = 1, . . . , 𝑛)(4) 

The iterations are carried out until the changes in the 

values of the partition matrix reported in consecutive 

iterations are lower than a certain predetermined 

threshold. 

2.2. Gaussian Process Regression 

GPR is briefly introduced in this section, as it is used 

to learn the relationship among attributes in this paper. 

Let the 𝑖-th input and response of interest be denoted by 

a dimensional vector, 𝒙𝑖 = (𝑥𝑖1, … , 𝑥𝑖𝑑), and its response, 

𝑦𝑖 = 𝑓(𝒙𝑖), respectively. The input set is denoted as 𝑫 =
{𝒙1, … , 𝒙𝑖 , … , 𝒙𝑛} , and the outputs are held in the n-

dimensional vector 𝒀 = [𝑦1, … , 𝑦𝑛]T . The output of 

Gaussian process regression modelled as  

𝑓(𝒙𝑖) = 𝜇 + 𝑧(𝒙𝑖) (𝑖 = 1, … , 𝑛)               (5) 

where 𝜇  is the overall mean, and 𝑧(𝑥𝑖)  is a Gaussian 

process with 𝐸(𝑧(𝒙𝑖)) = 0 , 𝑉𝑎𝑟(𝑧(𝒙𝑖)) = 𝜎𝑧
2 , and 

𝐶𝑜𝑟 (𝑧(𝒙𝑖), 𝑧(𝒙𝑗)) = 𝜎𝑧
2𝑅𝑖𝑗 . In GPR, 𝑓(𝑫)  has a 

multivariate normal distribution as follows: 

𝑓(𝑫)~𝑁(𝟏𝑛𝜇, 𝛴)                           (6) 

where 𝛴 = 𝑉(𝑫|𝑓(𝑫)) = 𝜎𝑧
2𝑹 , R is the Gaussian 

correlation function, and 𝟏𝑛 is an n×1 vector of all ones. 

In this paper, the following correlation function is used: 

𝑅𝑖𝑗 = 𝑒− ∑ 𝜃𝑘‖𝑥𝑖,𝑘−𝑥𝑗,𝑘‖
2

2𝑑
𝑘=1                     (7) 

where 𝜽 = [𝜃1, … , 𝜃𝑑]T is the vector of hyperparameters. 

The model in (5) with the correlation function in (7) is 

used to predict responses of any new input 𝒙∗. Following 

the maximum likelihood approach, the best linear 

unbiased predictor at 𝒙∗ is  

𝑓(𝒙∗) = �̂� + 𝒓′𝑹−1(𝒀 − 𝟏𝑛�̂�)                 (8) 

with mean squared error 

𝑠2(𝒙∗) = 𝜎𝑧
2(1 − 𝒓′𝑹−1𝒓 +

(1−𝟏𝑛
′ 𝑹−1𝒓)2

𝟏𝑛
′ 𝑹−1𝟏𝑛

)       (9) 

Given the hyperparameters 𝜽, the closed form estimators 

of 𝜇 and 𝜎𝑧
2 are as follows: 

�̂�(𝜽) = (𝟏𝑛
′ 𝑹−1𝟏𝑛)−1(𝟏𝑛

′ 𝑹−1𝒀)           (10) 

�̂�𝑧
2(𝜽) =

(𝒀−𝟏𝑛�̂�(𝜽))′𝑹−1(𝒀−𝟏𝑛�̂�(𝜽))

𝑛
           (11) 

The optimal hyperparameters 𝜽 can be estimated using 

the following log-likelihood 

𝑙𝑜𝑔(|𝑹|) + 𝑛𝑙𝑜𝑔[((𝒀 − 𝟏𝑛�̂�(𝜽))′𝑹−1(𝒀 − 𝟏𝑛�̂�(𝜽)))] (12) 

where |𝑹| is the determinant of R. Recall from (7) that 

the correlation matrix R depends on 𝜽 and 𝑫.  

3. PROPOSED CLUSTERING METHOD 

In this section, a new clustering method based on 

Gaussian process regression is proposed. Generally, the 

objective function 𝐽(𝐔, 𝐕) of fuzzy clustering algorithms 

can rewritten as follows: 

𝐽(𝐔, 𝐕) =  ∑ ∑ 𝑢𝑖𝑘
𝑚𝐷𝑖𝑘

2𝑛
𝑘=1

𝑐
𝑖=1                 (13) 

where 𝐷𝑖𝑘 denotes the distance between 𝑘-th datum and 

𝑖 -th cluster prototype. The necessary conditions for 

minimizing (13) with the constraint (4) result in the 

following partition matrix: 

𝑢𝑖𝑘 =  [∑ (
𝐷𝑖𝑘

𝐷𝑡𝑘
)

2

m−1𝑐
𝑡=1 ]

−1

(𝑖 = 1, . . . , 𝑐 & 𝑘 = 1, . . . , 𝑛)(14) 

To cluster the data based on their regression 

relationship, the 𝐷𝑖𝑘  in (14) should represent the 

difference among the regression relationships of different 

clusters. GPR is used to evaluate the regression 

relationship of 𝑖-th cluster as follows: 

𝑦𝑘,�̂� = 𝐺𝑃𝑅(𝒛𝑘)𝑖                    (15) 

where 𝑦𝑘,�̂�  is the estimation of output attribute of 𝑘-th 

datum of 𝑖-th cluster, 𝒛𝑘 is the vector of input attributes, 

and 𝐺𝑃𝑅(∙)𝑖 is the GPR model of 𝑖-th cluster. If a datum 

belongs to 𝑖-th cluster, the estimated 𝑦𝑘,�̂�   of 𝑖-th GPR 

model based on the data of 𝑖-th cluster is closer to the real 

𝑦𝑘 than those estimated by other GPR models. Thus, the 

distance 𝐷𝑖𝑘 in (13) is modified as follows: 

𝐷𝑖𝑘 = (𝑦𝑘 − 𝑦𝑘,𝑖
̂ )2                          (16) 

Thus, the objective function 𝐽(𝐔)  can be modified as 

follows: 

𝐽(𝐔) = ∑ ∑ 𝑢𝑖𝑘
𝑚𝑛

𝑘=1
𝑐
𝑖=1 (𝑦

𝑘
− 𝑦𝑘,𝑖

̂ )2               (17) 

where 𝑦𝑘,�̂� = 𝐺𝑃𝑅(𝒛𝑘)𝑖 , 𝒛𝑘  represent a new vector 

composed of the remaining attributes after removing the 

output attribute of  𝑘-th datum. As the proposed objective 

function is still under the framework of FCM, the 

necessary conditions for minimizing (17) with the 

constraint (2) result in the following partition matrix: 

𝑢𝑖𝑘 = [∑ (
(𝑦𝑘−𝑦𝑘,𝑖̂ )2

(𝑦𝑘−𝑦𝑘,𝑡̂ )2)

2

m−1𝑐
𝑡=1 ]

−1

                 (18) 

Comparing (18) with (4), the 𝑖-th cluster prototype 𝒗𝑖 in 

(4) is replaced by 𝑖-th GPR model based on the data of 𝑖-
th cluster. To ensure that the 𝑖-th GPR model can learn 

the regression relationship among attributes accurately, 

only the data with relatively high membership are used to 

construct the GPR model in each iteration. In this paper, 
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the membership criterion is set as 𝐔[ , 𝑖] ≥ 0.8. 

Considering FCM has shown benefits the data mining 

and knowledge discovery of real-world data [15], the 

clustering results of FCM is also utilized in the proposed 

method. The total procedure of the proposed clustering 

method is described as follows. 

Step (1) Setting the clustering number 𝑐, the objective 

attribute 𝑦, and the iteration number 𝑔 = 1; 

Step (2) Using FCM to cluster data and the obtained 

membership matrix 𝐔FCM  are used as the initial 

membership matrix 𝐔(𝟎); 

Step (3) Selecting the data in 𝑖-th cluster with 𝐔[ , 𝑖] 
≥0.8 and obtaining 𝑖-th cluster dataset; 

Step (4) Using 𝑖-th cluster dataset as training data to 

obtain 𝑖-th GPR model; 

Step (5) Using the GPR models from Step (4) to get 

the responses of all the data and creating the responses 

matrix 𝐘𝒏×𝑪; 

Step (6) Calculating the partition matrix 𝐔(𝒈)  using 

(18); 

Step (7) If ∀ 𝑖, 𝑘: max|𝑢𝑖𝑘
(𝑔)

− 𝑢𝑖𝑘
(𝑔−1)

| < 𝜀, then stop 

and get partition matrix 𝐔𝐆𝐏𝐑, otherwise set 𝑔 = 𝑔 + 1 

and return to Step (3). 

4. EXPERIMENTS ON SYNTHETIC DATASETS 

To assess the validity of the proposed method, several 

synthetic datasets are used in this section. The synthetic 

datasets are created as follows. In each cluster, the input 

attributes are randomly sampled using Latin hypercube 

sampling method (“randomLHS” in R-package “lhs”). 

The output attribute of each object is calculated 

according to the setting regression relationships and then 

added with a random relative error from −5% to +5% as 

the final value. After that, the data of different clusters 

are combined as the obtained dataset. Each dataset is 

given a denomination by the number of object data, 

attributes, clusters and relationship among attributes. For 

instance, N400A2C2F1 denotes that the dataset contains 

400 object data and can be divided evenly into two 

clusters, and A2 denotes the dataset has two attributes. 

The clustering performance of the proposed method is 

compared with three popular clustering methods, FCM, 

K-means and Expectation-Maximization algorithm (EM). 

The proposed method and FCM are coded by the authors 

using R, K-means is using “pam” from R-package 

“cluster” [16], and EM is using “emcluster” from R-

package “EMCluster” [17]. The clustering performance 

is evaluated in terms of misclassification (𝑀𝑆), which is 

calculated as follows: 

𝑀𝑆 =
𝑁𝑒𝑟𝑟𝑜𝑟

𝑁𝑡𝑜𝑡𝑎𝑙
× 100%                      (19) 

where 𝑁𝑒𝑟𝑟𝑜𝑟 is the number of misclassified data; 𝑁𝑡𝑜𝑡𝑎𝑙 

is the total number of data.  

In the experiments, the parameters of proposed method 

and FCM are set as follows: the fuzzification parameter 

𝑚 is 2, the threshold value ɛ is 10-6, and the maximum 

iteration is 100. The settings of K-means and EM are the 

default parameters of their R-packages. 

4.1. Effect of Attribute Number 

12 synthetic datasets are used to test the performance 

of the GPR-FCM method. The datasets have different 

attributes, and the two clusters of each dataset have 

similar but different regression relationships. The 

relationship of each dataset is selected from the 

benchmark functions in [18] which are widely used to 

test the performance of regression approaches such as 

GPR. The details are listed in Table 1.  

To illustrate the characteristics of the synthetic datasets 

used in this section, dataset D400A2C2F1 is shown in Fig. 

1, where the object data belonging to two different 

clusters are represented by wine and cyan stars. It can be 

found that the two clusters have similar spatial 

Table. 1  Details of synthetic datasets 
Data set Cluster Regression relationship D 

D400A2C2F1 
1 𝑦 = 𝑠𝑖𝑛2(0.5𝑧1 − 6) (𝑧1/4)2 + 10 [0, 

30] 2 𝑦 = 𝑠𝑖𝑛2(0.5𝑧1 − 6)(𝑧1/5)2 

D400A2C2F2 

1 
𝑦 =6-1/((𝑧1 − 0.5)2 + 0.03)-1/((𝑧1 − 0.9)2 +

0.04) [0, 

1] 
2 𝑦 =4-1/((𝑧1 − 0.5)2 + 0.03)-1/((𝑧1 − 0.9)2 +

0.04) 

D400A3C2F1 
1 𝑦 = (4 + 𝑧1𝑠𝑖𝑛 (𝑧1))(4 + 𝑒𝑥𝑝(−𝑧2

2)) [-2, 

2] 2 𝑦 = (6 + 𝑧1𝑠𝑖𝑛 (𝑧1))(4 + 𝑒𝑥𝑝(−𝑧2
2)) 

D400A3C2F2 
1 𝑦 = 𝑧1𝑒𝑥𝑝(−𝑧1

2 − 𝑧2
2) [-2, 

2] 2 𝑦 = 𝑧1𝑒𝑥𝑝(−𝑧1
2 − 𝑧2

2) + 1 

D400A4C2F1 
1 𝑦 = 𝑠𝑖𝑛(𝑧2 − 𝑧1) + (𝑧3 − 𝑧2)2 [1, 

2] 2 𝑦 = 𝑐𝑜𝑠(𝑧2 − 𝑧1) + (𝑧3 − 𝑧2)2 

D400A4C2F2 

1 𝑦 = −𝑧1𝑧2𝑧3/6 [0, 

2] 2 𝑦 = −
𝑧1𝑧2𝑧3

6
+ 0.5𝑧1

2 + 0.5  

D400A5C2F1 

1 
𝑦 = 0.8(10 𝑠𝑖𝑛(𝑧1𝜋) + ∑ 𝑧𝑖

4
𝑖=1 + 𝑧1𝑧2 +

𝑧3𝑧4)  [0, 

1] 
2 

𝑦 = 0.6(10 𝑠𝑖𝑛(𝑧1𝜋) + ∑ 𝑧𝑖
4
𝑖=1 + 𝑧1𝑧2 −

𝑧3𝑧4) + 0.75(𝑧1
2 + 𝑧2

2) + 4.5  

D400A5C2F2 

1 
𝑦 = 1 + 2𝑒𝑥𝑝(−2((𝑧1 − 1)2 + 𝑧2

2) −
0.5(𝑧3

2 + 𝑧4
2))  [0, 

1] 

2 
𝑦 = 1 + 𝑒𝑥𝑝(−2((𝑧1 − 1)2 + 𝑧2

2) − 0.5(𝑧3
2 +

𝑧4
2))   

D400A6C2F1 

1 
𝑦 = ∑ [

3

10
+ 𝑠𝑖𝑛 (

15

16
𝑧𝑖 − 1) + 𝑠𝑖𝑛2(

15

16
𝑧𝑖 −5

𝑖=1

1)]  [-1, 

1] 

2 
𝑦 = ∑ [

3

10
+ 𝑠𝑖𝑛 (

15

16
𝑧𝑖 − 1) + 𝑐𝑜𝑠2(

15

16
𝑧𝑖 −5

𝑖=1

1)]  

D400A6C2F2 

1 𝑦 = ∑ [(𝑧𝑖+1 − 𝑧𝑖)2 + (𝑧𝑖 − 1)2]4
𝑖=1   

[-1, 

1] 
2 𝑦 = ∑ [(𝑧𝑖+1 − 𝑧𝑖)2 + (𝑧𝑖 − 1)2]4

𝑖=1 + 5  

D400A7C2F1 
1 𝑦 = ∑ [(𝑧𝑖+1 − 𝑥𝑖)2 + (𝑧𝑖 − 1)2]5

𝑖=1   [-1, 

1] 
2 𝑦 = ∑ [(𝑧𝑖+1 − 𝑧𝑖)2 + (𝑧𝑖+1 − 1)2]5

𝑖=1 + 6  

D400A7C2F2 
1 

𝑦 = ∏ 𝑧𝑖
6
𝑖=1 + ∑ [𝑙𝑛(𝑧𝑖 − 2)2 + 𝑙𝑛(10 −6

𝑗=1

𝑧𝑖)2]  [-1, 

1] 
2 𝑦 = ∏ 𝑧𝑖

6
𝑖=1 + ∑ [𝑙𝑛(𝑧𝑖 − 2)2]6

𝑗=1 + 25  

 

 

 
Fig. 1 Clustering results of datasets D400A2C2F1 
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distribution, but their attributes have different regression 

relationships. The experiments on each dataset are 

conducted 30 times, and the average experimental results 

are shown in Table 2. It can be found that the GPR-FCM 

method produces much better clustering results than the  

 
FCM, K-means and EM for most datasets. The highest 

misclassification rate of the GPR-FCM method is 

23.75%, and the misclassification rates are mostly lower 

than 20.00% and even close to 0.00%. For dataset 

D400A6C2F1, the misclassification rate of the GPR-

FCM method is 17.25% which is higher than EM. But 

EM achieves around 50% of misclassification rate for six 

datasets. It can be concluded that the GPR-FCM method 

exhibits much better results than EM for the 12 synthetic 

datasets in this section. To further show the difference 

between the proposed method and other clustering 

algorithms, the clustering results of dataset 

D400A2C2F1 is shown in Fig. 2. It is observed that the 

GPR-FCM method is clustering the data according to the 

regression relationship, but the other methods are based 

on spatial distribution. Thus, the GPR-FCM method can 

provide much better clustering performance than other 

methods.  

4.2. Effect of Sample Number 

 

24 synthetic datasets with different samples are used 

to test the performance of the GPR-FCM method on the 

number of samples. The datasets used here are based on 

some datasets in Section 4.1, but their samples 300, 400, 

500 and 600 samples, respectively. The experiments on 

each dataset are conducted 30 times, and the average 

experimental results are shown in Table 3. From this 

table, it is observed that the GPR-FCM method produces 

better clustering results than the other clustering 

algorithms for most datasets. FCM and K-means provide 

similar clustering performance for the datasets with same 

regression relationship but with different sample 

numbers, but the clustering results of EM are different 

with them. The reason is that FCM and K-means cluster 

data according to their spatial distance but EM is based 

on their statistical distribution. With the sample number 

changing, the center of each cluster does not vary greatly 

but the statistical distribution might change greatly. Thus, 

FCM and K-means provide similar results, but the 

clustering results of EM are different. For datasets 

D3/4/5/600A2C2F1 and D3/4/5/600A3C2F1, their 

misclassification rates given by the GPR-FCM method 

are 0.00%. For datasets D3/4/5/600A4C2F1, 

D3/4/5/600A5C2F1 and D3/4/5/600A7C2F1, the GPR-

FCM method tends to provide better clustering results 

with sample number increasing. When the dataset has 

more samples, more data can be used to build the GPR 

model of each cluster. The GPR models are closer to the 

real regression relationship, so the clustering results are 

improved. For dataset D300/400/500/600A6C2F1, the 

misclassification rates of the GPR-FCM method ranges 

from 6.80% to 19.67% which is smaller than EM. 

Considering EM achieves much higher misclassification 

rate for the other datasets than the GPR-FCM method, the 

GPR-FCM method still exhibits much better clustering 

performance than EM for the synthetic datasets tested in 

this sub-section. 

 

 

4.3. Effect of Noise 

24 synthetic datasets are used to test the performance 

of the GPR-FCM method on the noise of regression 

relationship. The noise level is set as ±2.5%, ±5.0%, 

±7.5%, and ±10.0%, respectively. 30 times’ experiments 

are conducted on each dataset, and the average 

experimental results are shown in Table 4. From this 

table, it is observed that the GPR-FCM method produces 

better clustering results than FCM, K-means and EM. For 

datasets D400A4C2F2, the misclassification rates for 

different levels of noise given by the GPR-FCM method 

are all 0.00%. The clustering performance of FCM and 

K-means is similar with each other, but is much different 

with EM. From the theory of FCM, K-means and EM, it 

is known that FCM and K-means cluster the data 

according to their spatial distribution but EM is based on 

their statistical distribution. With the level of noise 

increasing, the spatial distribution of each cluster changes 

slightly but the statistical distribution might change 

greatly. Thus, FCM and K-means provide similar results, 

but EM does not. In addition, it is also observed that 

misclassification rate of the GPR-FCM method tends to 

increase with the level of noise increasing, which is 

mainly because that the overlap between the two clusters 

Table. 2 Clustering Results of Synthetic Datasets 
Data set GPR-FCM FCM K-means EM 

D400A2C2F1 0.00% 39.00% 39.25% 46.25% 

D400A2C2F2 1.75% 47.75% 51.50% 48.00% 

D400A3C2F1 0.00% 13.75% 13.00% 28.00% 

D400A3C2F2 21.50% 46.50% 46.25% 48.25% 

D400A4C2F1 23.75% 27.75% 30.50% 38.50% 

D400A4C2F2 0.00% 13.00% 24.75% 1.50% 

D400A5C2F1 0.00% 33.75% 33.75% 49.50% 

D400A5C2F2 1.75% 3.75% 6.00% 49.50% 

D400A6C2F1 17.25% 19.50% 26.50% 5.50% 

D400A6C2F2 3.75% 26.25% 26.25% 18.00% 

D400A7C2F1 13.00% 20.75% 24.75% 13.75% 

D400A7C2F2 21.25% 26.00% 24.50% 47.25% 

 

Table. 3 Effect of sample number on the clustering performance 
Data set GPR-FCM FCM K-means EM 

D300A2C2F1 0.00% 39.67% 39.33% 47.33% 

D400A2C2F1 0.00% 39.00% 39.25% 46.25% 

D500A2C2F1 0.00% 38.80% 39.20% 38.40% 

D600A2C2F1 0.00% 38.83% 35.67% 37.00% 

D300A3C2F1 0.00% 14.67% 15.67% 41.00% 

D400A3C2F1 0.00% 13.75% 13.00% 28.00% 

D500A3C2F1 0.00% 15.20% 13.40% 35.60% 

D600A3C2F1 0.00% 15.00% 12.33% 28.50% 

D300A4C2F1 24.33% 30.33% 30.67% 47.00% 

D400A4C2F1 23.75% 27.75% 30.50% 38.50% 

D500A4C2F1 23.70% 27.00% 30.40% 40.20% 

D600A4C2F1 10.50% 28.00% 39.83% 39.50% 

D300A5C2F1 29.00% 30.33% 30.67% 51.33% 

D400A5C2F1 0.00% 33.75% 33.75% 49.50% 

D500A5C2F1 0.00% 29.80% 29.40% 33.60% 

D600A5C2F1 0.00% 31.83% 31.83% 33.50% 

D300A6C2F1 19.67% 20.33% 29.33% 5.33% 

D400A6C2F1 17.25% 19.50% 26.50% 5.50% 

D500A6C2F1 6.80% 22.80% 25.80% 6.80% 

D600A6C2F1 11.33% 22.33% 30.50% 8.33% 

D300A7C2F1 18.00% 23.67% 23.67% 22.00% 

D400A7C2F1 13.00% 20.75% 24.75% 13.75% 

D500A7C2F1 2.40% 25.20% 24.40% 19.00% 

D600A7C2F1 3.50% 22.67% 22.83% 16.67% 
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is increasing with level of noise increasing. The GPR-

FCM method is still able to provide better clustering 

results than the other methods when clustering the 

datasets with different levels of noise. 

 

4.4. Effect of Cluster Number 

Three synthetic datasets are designed to test the 

performance of the GPR-FCM method on cluster 

numbers in this section. The first dataset D600A4C3 has 

three clusters, and their regression relationship are 

similar. The second dataset D800A3C4 has four clusters, 

and each pair of clusters has similar regression 

relationship. The last dataset D1000A2C5 has five 

clusters, but each cluster has its special regression 

relationship. The details are shown in Table 5. The 

experiments are conducted 30 times on each dataset, and 

the average experimental results are shown in Table 6. 

From this table, it is observed that the GPR-FCM method 

produces better clustering results than the other 

clustering methods. The GPR-FCM method can provide 

competitive clustering results when clustering the 

datasets with different cluster numbers. 

 

 

4.5. Comparison of Overall Performance 

In this paper, Wilcoxson Test [19] is used to 

statistically compare the GPR-FCM method with FCM, 

K-means, and EM. 𝑀𝑆 is used to validate the clustering 

performance for the GPR-FCM method, FCM, K-Means 

and EM. The clustering results in the Sections 4.1~4.4 

are used, and the results of Wilcoxson test are shown in 

Table 7. It is observed that all P-values of 𝑀𝑆 are much 

less than 0.05. The null hypothesizes, the GPR-FCM 

method is better than FCM, K-means and EM, are 

accepted. Thus, the performance of the GPR-FCM 

method is significantly better than FCM. 

 

5. EXPERIMENTS ON ENGINEERING DATASETS 

5.1. Mill Dataset 

 
Figure. 2 Clustering results of the Mill dataset 

 

The Mill dataset is from three experiments running on 

a milling machine under different operating conditions 

[20]. The dataset is to study the tool wear in a regular cut. 

Data sampled by three different types of sensors (acoustic 

emission sensor, vibration sensor, current sensor) are 

acquired at several positions, in which the DC spindle 

motor current, AC spindle motor current, table vibration, 

spindle vibration, acoustic emission at table, and acoustic 

emission at spindle of each experiment are recorded. The 

initial data have 9000 samples. In this paper, we choose 

the datum every 60 data (1, 61, 121, ..., 8941), and only 

the data of the milling process is retained. Finally, the 

used dataset has 300 samples and includes three classes. 

The parameters of the clustering algorithms are set as 

follows: the fuzzification parameter 𝑚 is 2, the threshold 

value is 10−6 , the maximum iteration is 50, and the 

membership criterion 𝜃 is 0.33. The DC spindle motor 

current is set as the output attribute, and the AC spindle 
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Table. 4 Effect of noise on the clustering performance 

Data set Noise 
GPR-

FCM 
FCM K-means EM 

D400A2C2F2 ±2.5%,  0.00% 47.75% 47.75% 48.00% 

D400A2C2F1 ±5.0%,  1.75% 47.75% 48.50% 48.00% 

D500A2C2F1 ±7.5%, 8.75% 48.00% 48.50% 48.75% 

D600A2C2F1 ±10.0% 10.75% 47.75% 47.50% 47.75% 

D400A3C2F2 ±2.5%,  14.50% 46.25% 46.00% 48.25% 

D400A3C2F1 ±5.0%,  21.50% 46.50% 46.25% 48.25% 

D500A3C2F1 ±7.5%, 24.75% 47.00% 46.50% 48.25% 

D600A3C2F1 ±10.0% 27.00% 46.75% 45.00% 49.50% 

D400A4C2F2 ±2.5%,  0.00% 20.00% 25.00% 10.25% 

D400A4C2F1 ±5.0%,  0.00% 13.00% 24.75% 1.50% 

D500A4C2F1 ±7.5%, 0.00% 19.75% 19.00% 19.50% 

D600A4C2F1 ±10.0% 0.00% 19.00% 18.00% 2.25% 

D400A5C2F2 ±2.5%,  14.50% 43.75% 36.25% 24.75% 

D400A5C2F1 ±5.0%,  10.00% 44.25% 44.25% 31.75% 

D500A5C2F1 ±7.5%, 21.50% 42.75% 47.00% 30.50% 

D600A5C2F1 ±10.0% 23.00% 40.75% 47.00% 31.00% 

D400A6C2F2 ±2.5%,  3.50% 24.25% 26.75% 19.25% 

D400A6C2F1 ±5.0%,  3.75% 26.25% 26.25% 18.00% 

D500A6C2F1 ±7.5%, 4.75% 26.50% 27.00% 20.25% 

D600A6C2F1 ±10.0% 15.50% 27.00% 28.00% 13.00% 

D400A7C2F2 ±2.5%,  14.75% 21.00% 23.75% 33.75% 

D400A7C2F1 ±5.0%,  21.25% 26.00% 24.50% 47.25% 

D500A7C2F1 ±7.5%, 26.75% 27.50% 28.50% 48.25% 

D600A7C2F1 ±10.0% 29.75% 31.50% 32.00% 35.00% 

 

 

Table. 5 Details of the synthetic datasets with different cluster 

numbers 
Data set Cluster Relationship D 

D400A4C3 

1 𝑦 = −𝑧1𝑧2𝑧3/6 

[0, 2] 2 𝑦 = −
𝑧1𝑧2𝑧3

6
+ 0.5𝑧1

2 + 0.5  

3 𝑦 = −
𝑧1𝑧2𝑧3

6
+ 0.5𝑧2

2 + 0.5𝑧1
2 + 0.5  

D400A3C4 

1 𝑦 = (4 + 𝑧1𝑠𝑖𝑛 (𝑧1))(4 + 𝑒𝑥𝑝(−𝑧2
2)) 

[-2, 2] 
2 𝑦 = (6 + 𝑧1𝑠𝑖𝑛 (𝑧1))(4 + 𝑒𝑥𝑝(−𝑧2

2)) 

3 𝑦 = 𝑧1𝑒𝑥𝑝(−𝑧1
2 − 𝑧2

2) 

4 𝑦 = 𝑧1𝑒𝑥𝑝(−𝑧1
2 − 𝑧2

2) + 1 

D400A3C45 

1 
𝑦 = −5/((𝑧1 − 0.5)3 + 0.03) −1/((𝑧1 −
9)3 + 0.04)  

[0, 30] 

2 𝑦 = 5𝑠𝑖𝑛 (0.3 ∗ 𝑧1)  

3 𝑦 = 12/𝑒𝑥𝑝 (−0.1𝑧1 + 1) ∗ 𝑠𝑖𝑛 (0.5𝑧1) 

4 𝑦 =
36 sin2(0.1𝑧1)

𝑧1
− (𝑧1/30)2 − 14  

5 𝑦 = 𝑠𝑖𝑛2(0.5𝑧1 − 6) (𝑧1/10)2 + 20  

 

Table. 6 Clustering results of the synthetic datasets with different 

cluster numbers 
Data set GPR-FCM FCM K-means EM 

D400A4C3 10.17% 47.83% 37.00% 37.50% 

D400A3C4 9.38% 49.75% 42.13% 46.76% 

D400A2C5 36.40% 47.10% 49.10% 47.00% 

 

Table. 7 Results of wilcoxson test 
Index Null hypothesis Alternative hypothesis P-value 

MS 
GPR-FCM is better than 

FCM 

FCM is better than GPR-

FCM 
2.63E-12 

MS 
GPR-FCM is better than K-

means 

K-means is better than 

GPR-FCM 
2.64E-12 

MS GPR-FCM is better than EM 
EM is better than GPR-

FCM 
8.06E-11 
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motor current, table vibration, spindle vibration, acoustic 

emission at table, and acoustic emission at spindle are set 

as the input attributes. The obtained clustering results are 

shown in Figure 2. It can be found that the GPR-FCM 

method produces the smallest misclassification rate. The 

proposed method is able to provide competitive 

clustering results compared with the other conventional 

clustering methods for the Mill dataset. 

5.2. Borehole Dataset 

The borehole dataset comes from the water flow rate 

problem [21]. The dataset has 400 samples, and can be 

evenly divided into two clusters according to the radius 

of borehole. In the experiment, the water flow rate is set 

as the output attribute, and the other the parameters are 

set as follows: the fuzzification parameter  𝑚  is 2, the 

threshold value is 10−6, the maximum iteration is 50, the 

membership criterion 𝜃 is 0.6. The experimental results 

are shown in Figure 3. It can be seen the misclassification 

rate of the GPR-FCM method is 0.125, which is smaller 

than the other clustering methods. 

 
Figure. 3 Clustering results of the Borehole dataset 

6. CONCLUSIONS 

In this paper, a clustering method is proposed based on 

Gaussian process regression and fuzzy c-means 

algorithm. In the proposed method, the regression 

relationship instead of the distance among the objects is 

utilized to evaluate the difference between the clusters, 

and is described through Gaussian process regression. 

The clustering objective function of the proposed method 

and its optimization method are designed under the 

framework of fuzzy c-means algorithm. The effect of 

attribute number, sample number, level of noise and 

cluster number on the performance of the proposed 

method is investigated through a series of synthetic and 

engineering datasets. The results indicate that the GPR-

FCM method can provide much better clustering 

performance than the conventional clustering methods 

based on spatial distribution, which indicates the 

applicability and potential of the proposed method in data 

clustering.  
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