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Abstract. Recently, the concept of digital twin is 
applied to various research topics. The aim of digital 
twin is to simulate and analyze the real world in the 
cyber space. In order to simulate a real-world 
phenomenon, we often have to extract features and 
structures based on graph theory and topology. The 
methodology of growing neural gas (GNG) is useful to 
extract topological features hidden in big data. In this 
paper, we propose a method of multi-scale batch 
learning (MS-BL) to the realize stable learning of 
GNG. Next, we apply the proposed method to the 
topological feature extraction in navigation tasks of 
mobility support robots. Finally, we show 
experimental results of the proposed method and 
discuss the effectiveness of the proposed method. 
 
Keywords: Topological Mapping, Growing Neural 
Gas, Multi-scale Batch Learning, Mobility Support 
Robots 
 

1.   INTRODUCTION 
Recently, various approaches to digital transformation 
[1], cyber-physical systems [2], and digital twin [3] have 
been proposed and discussed based on the integration of 
information, intelligence, communication, and robot 
technologies. The main focus of digital transformation is 
to realize all areas of optimization from inputs to outputs 
after the digitization from analogue data to digital data 
and the digitalization of automation or business processes. 
The essence of these approaches is to realize super real-
time measurement, monitoring, simulation, prediction, 
search, adaptation, and control integrated mutually from 
micro-, meso-, and macro-scopic points of view. 
Especially, the feature extraction from big data is 
important to realize super real-time information 
processing. For example, the features extracted in the 
lower layer are used for the inference and prediction in 
the higher level. This is called a bottom-up construction. 
On the other hand, the inference and prediction results 
are used as the constraints or order parameters for the 

information processing in the lower layer. This is called 
a top-down constraint. Furthermore, this kind of 
information processing cycle is called micro-macro loop 
based on bottom-up construction and top-down 
constraint.  

The aim of digital twin is to simulate and analyze the 
real world in the cyber space and this aim is almost 
similar to that of cyber-physical system. In order to 
simulate a real-world phenomenon, we often have to 
extract features and structures based on graph theory and 
topology. For example, topological mapping methods are 
used for 3D modeling available for accurate physics 
simulation from the microscopic point of view. Graph-
based methods are used for knowledge representation 
available for huge-scale rule-based inference from the 
macroscopic point of view. Furthermore, we can build a 
topological model and knowledge according to a 
mesoscopic modeling and simulation approach to 
integrate microscopic models and macroscopic 
knowledge, called Topological Twin. The aim of 
topological twin is to (1) extract topological structures 
hidden implicitly in the real world, (2) reproduce them 
explicitly in the cyber world, and (3) Simulate and 
analyze the real world in the cyber world. Furthermore, 
we must deal with social or mental world in addition to 
cyber-physical systems. Figure 1 shows topological twin 
in cyber-physical-social systems. In this paper, we focus 
on the topological mapping between the macroscopic and 
mesoscopic levels.  

Various types of growing neural gas (GNG) have been 
proposed to extract topological structures from data [4-
7]. Originally GNG was proposed by Fritzke as one of 
unsupervised learning methods such as self-organized 
map (SOM) [8], neural gas (NG)[6], growing cell 
structures (GCS)[7]. Basically, these methods use the 
competitive learning. The number of nodes and the 
topological structure of the network in SOM are designed 
beforehand. In NG, the number of nodes is fixed 
beforehand, but the topological structure is updated 
according to the distribution of a sample data. On the 
other hand, GCS and GNG can dynamically change the 
topological structure based on the adjacent relation 
(edge) referring to the ignition frequency of the adjacent 
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node according to the error index. However, while GCS 
does not delete nodes and edges, GNG can delete nodes 
and edges based on the concept of age. These methods 
have been successfully applied to various types of real-
world problems [9-12], but we still have problems on the 
difficulty of setting hyper parameters used in growing 
neural network.  

We have proposed various types of GNG to improve 
the learning performance. In order to improve the 
convergence property of GNG, we proposed a method of 
batch-learning GNG (BL-GNG) [13] and showed the 
stable optimization of clustering and topological 
mapping by BL-GNG in the research of intelligent 
robotics [14]. However, original BL-GNG adds a node to 
the network after the sampling of all data. Therefore, we 
propose a method of multi-scale BL-GNG in order to 
improve the learning speed. 

This paper is organized as follows. Section II explains 
a simulation example of tracking problems of humans 
and robots in a public area. Section III proposes a method 
of multi-scale batch-learning GNG (MS-BL-GNG). First, 
we explain a learning method of standard GNG, and 
discuss the setting of hyper parameters through 
preliminary simulation results. Next, we explain the basic 
idea of multi-scale batch-learning to enhance the learning 
property of GNG. Section IV shows numerical 
simulation results and discuss the convergence property 
of MS-BL-GNG through the numerical comparison by 
different settings of hyper-parameters. Finally, Section V 
discuss the essence of the proposed method and discusses 
the future direction of this research.  
 

 
Fig. 1. Topological twin in cyber-physical-social systems 

2.  MOBILITY SUPPORT ROBOTS 
Recently, various types of robot partners have been 
developed to realize human-robot interaction [15-17]. For 
example, communication robots are used to realize 
information support service for elderly care, child nursing 
and others. Mobile robots are used for delivery service and 
mobility supports. The mobility support is very important 
for elderly people to enhance the motivation for going out 
and to prevent them from locomotive syndrome and 

dementia. We have developed smart senior cars for elderly 
people shown in Fig.2 (a) and we will use electric 
wheelchairs in this research. Therefore, we are developing a 
human tracking system and navigation system of mobility 
support robots towards the realization of cyber-physical 
system. 

We are developing a mesoscopic simulation [18] in the 
cyber space (Fig.2 (b)). Each person and robot can take 
multi-objective behaviors of collision avoidance and target 
tracing by using fuzzy control [14,19,20]. The numbers of 
humans and mobility support robots are 10 and 4, 
respectively, in this simulation. The position of humans and 
robots is transferred to the macroscopic simulation, and their 
trajectory patterns are extracted from the movement data by 
MS-BL GNG. We generated a data set composed of 3200 
points as the trajectories of humans and robots by using the 
mesoscopic simulation. 
 

   
(a) An example of smart senior car 

 

 
(b) Mesoscopic simulation of humans and mobility support robots 

Fig. 2. Towards cyber-physical system using mobility support robots 

 
(a) Initialization               (b) Node Selection  

 
                          (c) Edge removal         (d) Topological mapping  

Fig. 3. A learing process of standard GNG. 
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3. MULTI-SCALE BATCH-LEARNING GROWING 
NEURAL GAS 
3.1. A Methodology of Growing Neural Gas 

This section discusses the performance of standard GNG. 
First, we explain a learning process of standard GNG (in 
Fig.3). The notations used in GNG are shown as follows. 

wi : the nth dimensional vector of i-th node 
A : A current set of nodes 
Ei : accumulated error variable 
Ni : a set of nodes connected to the i-th node  
ci,j : edge between the i-th and j-th nodes  
ai,j : age of edge between the i-th and j-th nodes  
  

Step 1: Generate two or three nodes with the edge 
connectivity (Fig.3 (a)).  
Step 2:  Start training with the iteration (it =1) to l times of 
weight update  
Step 3:  Update the network according to a sample data 
3-1. Select the nearest node (winner), s1 and the second-

nearest unit, s2 with a sample data v given as an input to the 
network according to the probability with p(v) (Fig.3 (b)) 

         (1) 

          (2) 

3-2. Update the accumulated error by adding the distance 
between the input and reference vector.  

                              (3) 

3-3. Update the reference vectors of the winner and its 
direct topological neighbors, 

                       (4) 

              (5) 

where h1 and h2 are the learning rate. 
 3-4. If there is no edge between nodes s1 and s2, the age is 
reset to 0 ( ). Otherwise, an edge is added to the 

network ( ). The age of edges connecting with the 

node s1 is incremented, 
.                      (6) 

Remove the edge with an age larger than amax (Fig.3 (c)). 
As a result, remove the nodes having no edge. 
Step 4: Decrease the error variables of all nodes, 

                              (7) 

Step 5: Increment iteration times, it. Continue with Step 3, 
if the iteration times is not an integer multiple of a parameter 
l. 
Step 6: Insert a new node as follows; 
6-1. Select the node q with the maximum accumulated 

error.   

                        (8) 

6-2. Select the node f with the maximum accumulated error 
among the neighbors of q. 
6-3. Add a new node r to the network and interpolate its 
reference vector from q and f. 

                       (9) 

6-4. Insert the edges connecting the new node r with nodes 
q and f, and remove the original edge between q and f. 
6-5. Decrease the error variables of q and f by a fraction a. 

                     (10) 

                         (11) 

6-6. Interpolate the error variable of r from q and f    

                   (12) 

Step 7: Continue with step 2 if the stopping criterion (e.g., 
network size or some performance measure) is not yet 
fulfilled. 
 
As a result, GNG can conduct clustering and topological 
mapping in each cluster simultaneously (Fig.3 (d)). Figure 
4 shows a typical learning result of topological feature 
extraction by standard GNG where h1 = 0.05; h2 = 1.0; amax 
=50; l=500; b=0.05. The total number of data sampling is 
200,000. These parameters are decided experimentally. 
Table 1 shows the comparison results of average distance 
against all data after the learning. Figure 5 shows the 
comparison results of the average distance against all data 
every 100 times of learning by the different parameter 
setting of h1 and h2. There is no significant difference of the 
learning results among them based on the discussion on the 
tradeoff between the learning rate and its corresponding 
learning stability (convergence property). However, the 
parameter setting is very sensitive to its learning 
performance. Therefore, we still have a problem that we 
carefully have to decide the setting parameters according to 
the aim of topological mapping, e.g., online adaptability and 
offline optimality according to sampling data set. 

 

     
(a) Data distribution (3200 points)               (b) A learning result 

Fig. 4. A typical learning result of topological feature extraction by 
standard GNG. 

Table 1. Comparison results of average distance after learning 

 

s1 = argmini∈A v − wi

s2 = arg mini∈A\{s1}
v − wi

Es1 ← Es1 + v − ws1

ws1 ← ws1 +η1 v − ws1( )
wj ← wj +η2 v − wj( ) if cs1, j = 1

as1,s2 = 0

cs1,s2 = 1

as1, j ← as1, j +1 if cs1, j = 1

Ei ← Ei − βEi ∀i ∈A( )

q = argmax
i∈A

Ei

wr = 0.5 ⋅ wq +wf( )

Eq ← Eq −αEq

Ef ← Ef −αEf

Er = 0.5 ⋅ Eq + Ef( )
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Fig. 5. A typical Comparison results of the different parameter setting of 

h1 and h2. 
 

3.2.    A method of multi-scale batch-learning for 
GNG 
In general, we can take one of three training approaches of 
stochastic gradient decent, Mini-batch gradient decent, and 
batch gradient decent. The stochastic gradient descent, an 
iterative method to optimize an objective function, is used 
in the original GNG. The reference vectors (nodes) are 
updated when a sample data is given to the network. The 
mini-batch gradient decent calculates the sum of weight 
update according to two or more data (less than the full size 
of data set). The mini-batch gradient decent has been often 
used in the training of deep learning methods. While the 
number of weight parameters in the deep learning methods 
is predefined, the number of nodes is increasing in GNG. 
Therefore, we should use multi-scale size of data from a 
small size to full size in order to realize fast and efficient 
training of GNG. Fig.6 shows an updating strategy of multi-
scale batch learning (MS-BL) where the number of data and 
maximal number of nodes are D and N, respectively. 
 

 
Fig. 6. Learning phase update in MS-BL-GNG (lL={D/8, D/4, D/2, D}, 
µL ={N/2, 3N/4, 7N/8, N} where D and N are the number of data and 

maximal number of nodes, respectively, in the above example) 

We divide the full size of data set into 8 mini-batch size 
of data sets in this example where the number of data in the 
phase level (L) is represented as lL. Individual mini-batch 
size of data sets are used sequentially to update the reference 
vector. A new node is added to the network after the weight 
update by one mini-batch learning. As a result, the number 
of nodes is increasing faster in the lower phase level. If the 
number of nodes reaches the parameter (µL), the learning 
phase level to the next level. MS-BL-GNG tries to cover the 
overall data set in the beginning and can conduct fine 
topological mapping by using full size of data set in the final 
phase. 

We modify the learning algorithm of a standard GNG in 
the following. 
Step 1: Generate two or three nodes with the edge 
connectivity. Initialize the phase level (L=1).  

Step 2:  Initialize the temporal weigh update 
( ), selection times ( ) and the 

temporal edge connectivity ( ). Start the 
multi-scale training with the iteration (it =1). 
Step 3:  Update the temporal weigh update and the temporal 
edge connection according to a sample data 
3-1. Select the nearest node (winner), s1 and the second-

nearest unit, s2 with a sample data v given as an input to the 
network according to the probability with p(v) 
3-2. Update the accumulated error by adding the distance 

between the input and reference vector.  
3-3. Calculate weight updates of the winner and its direct 

topological neighbors  

                  (4’) 

      (5’) 

Increment the selection times . 

3-4. Update the temporal edge connectivity ( ). 

Step 4: Decrease the error variables of all nodes. 
Step 5: Increment iteration times, it. Continue with Step 3, 
if the iteration times is not an integer multiple of lL. 
Step 6: Update the weights by the MS-BL, update the edge 
connectivity, and remove the nodes with . 

                (13) 

           (14) 

Step 7: Insert a new node. If the number of nodes (A) 
reaches the parameter (µL), increment the learning phase 
level. 
Step 8: Continue with step 2 if the stopping criterion (e.g., 
network size or some performance measure) is not yet 
fulfilled. 

 
Although a standard GNG needs the age of edges, MS-

BL GNG does not need to consider it. Furthermore, we have 
to pay much attention to the setting of learning rates in the 
standard GNG in order to realize the stable topological 
mapping, but we can use h1=1 because of batch-learning. 

4. SIMULATION RESULTS 
This section shows simulation results of the proposed 
method. The number of data (D) is 3200; the maximal 
number of nodes (N) is 160; the number of phases is 5. 
Therefore, we use the parameter setting of lL={200, 400, 
800, 1600, 3200}, µL ={80, 120, 140, 150, 160} in this 
simulation example. The learning rate of the nearest node 
(winner) and second nearest node are h1 = 1.0 and h2 = 0.05, 
respectively. The number of overall sampling times is 
200,000 (= 62.5•D). If we use a standard BL-GNG, we can 
conduct only 62 times of weight updates. Therefore, we 
don’t show simulation results of a standard BL-GNG in this 
paper. 
 

Δwi = 0, i∈A xi = 0, i∈A

′ci, j = 0, i, j ∈A

Δws1 ←Δws1 +η1 v − ws1( )
Δwj ←Δwj +η2 v − wj( ) if cs1, j = 1

(xs1 + +, x j + + ( j ∈Ns1 ))

′cs1,s2 = 1

xi = 0

wi ← wi + Δwi / xi , if xi > 0

ci, j =
′ci, j if ′ci, j = 1

0 otherwise

⎧
⎨
⎪

⎩⎪
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Fig. 7. Examples of the topological stucure for the time series data. 

 
(a)  Case 1: Comparison results of the different h2 where h1 is fix at 1.0 

(standard GNG: h1 = 0.05, h2 = 0.01) 

 
(b)  Case 2: Comparison results of the different h1 where h2 is fix at 0.05. 

Fig. 8. Change of average distance against all data. 

 
Fig. 9. Comparison of average distance against all data in the learning 

results obtained by using the different learning rates (h2) in MS-BL-GNG 

Figure 5 shows an example of learning in MS-BL-GNG. 
The topological structure is updated gradually as the 
increase of nodes. Figure 6 shows the change of average 

distance by all data of (a) case 1 where the learning rate (h2) 
is 0, 0.05, 0.1, 0.2 and 0.3 and h1 = 1.0 and (b) case 2 where 
the learning rate (h1) is 0.1, 0.5, and 1.0 and h2 = 0.05. The 
result of case 1 shows that the effect of h2 to the learning 
speed is very low. It is obvious that the weight update of 
reference vectors is mainly done by batch-learning where h1 
= 1.0. The result of case 2 shows there is no significant 
difference among parameter settings, but there is a residual 
error in the learning results in case of h1<1.0. Furthermore, 
we compare the learning result between MS-BL-GNG and 
standard GNG where h1 = 0.05 and h2 = 0.01. The standard 
GNG with the optimal parameter setting is almost same with 
that of MS-BL-GNG. Figure 7 shows the comparison results 
of the average distance against all data in the learning results 
(after 200,000 times of data sampling) obtained by using the 
different learning rates (h2). The average distance is 
increasing approximately linearly as the increase of the 
learning rate (h2). The original aim of GNG is to optimize 
the following function, 

     (15) 

where g is the membership degree to the h-th node 
connected with the j-th node. Therefore, the average 
distance is longer as the increase of the learning rate on the 
second nearest node. If we use h2 = 0, its corresponding 
learning process is the same with k-means algorithm, 
because the learning is done according to the average of data 
selected by the nearest node. The advantage of GNG is in 
the learning of topological mapping based on the nearest and 
second nearest node, but we should consider the effect of 
distance to the learning. Therefore, we use a distance-based 
learning method used in ART and SOM, 

     (16) 

where  is the learning rate and is a parameter related 
to the variance. The effect of distance is more sensitive as 
the increase of . This means the learning tendency of the 
distance-based MS-BL-GNG in case of higher learning rate 
( ) is similar to that of the standard MS-BL-GNG.  
 Finally, Fig. 11 shows an example of topological feature 
extraction in a navigation task of mobile support robots. The 
obtained topological map represents the features of 
trajectories of human and robot movements. The density of 
nodes shows the crowdedness when many humans and 
robots encounter each other. We can apply the proposed 
method to extract human movement patterns in public areas 
such as departments or airports and can use the navigation 
tasks of mobile robots. Furthermore, the topological map 
can be applied to improve the service to humans.  

JGNG = ri, j vi − wv
j=1

N

∑
2

+
i=1

D

∑ ui, j vi − wv
j=1

N

∑
2

i=1

D

∑

ri, j =
1 if j = argmin

k∈A
vi − wk

0 otherwise

⎧
⎨
⎪

⎩⎪

ui, j =
γ if ch, j = 1(h = argmink∈A

vi − wk )

0 otherwise

⎧
⎨
⎪

⎩⎪

η2 =η3 exp − v −wj

2
/η4( )

η3 η4

η4

η4
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(a) h4 = 0.5 

 
(b) h4 = 1.0 

 
(c) h4 = 2.0 

 
(d) h4 = 3.0 

Fig. 10. Comparison of average distance against all data obtained by using 
the different learning rates (h3) in distance-based MS-BL-GNG. 

 

 
Fig. 11. Topological feature extraction in a tracking task (left: a 

simulation of human-robot interaction, right: the tracking of humans and 
robots) 

5. CONCLUSION 
In this paper, we proposed the multi-scale batch-learning 
growing neural gas (MS-BL GNG) to extract topological 

features in navigation tasks of mobility support robots. We 
first proposed the MS-BL algorithm based on the property 
of GNG.  Since the number of nodes is increasing in GNG, 
we can use the small size of data set in the beginning of the 
learning. Therefore, we proposed a multi-scale approach 
from a small size to full size in order to realize fast and 
efficient training of GNG. Next, we show the preliminary 
experimental results of a simple multi-scale extension of a 
standard GNG. We discussed the sensitivity of parameter 
settings to learning results related to the aim of topological 
mapping in GNG. Next, we applied the distance-based 
learning method to the weight update of the second nearest 
node and show the sensitivity of the distance-based learning 
method in MS-BL-GNG. Furthermore, we discussed the 
learning performance of MS-BL-GNG by using different 
hyper parameters. The comparison results show that we can 
realize various types of topological mapping by considering 
the effect of learning sensitivity. 

Finally, we show the feature extraction results in the 
navigation tasks of mobility supports robots. The extracted 
features will be used in the path planning and navigation of 
mobility supports robots. As a future work, we have to 
discuss the applicability of multi-scale batch learning to 
dynamically changing data in online adaptation. Especially, 
we will discuss how to generate multi-scale data set in real 
time. Furthermore, we will propose a path planning method 
of mobile robots based on topological mapping. 
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