
Title of Your Paper 

 

 

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021) 

Beijing, China, Oct.31-Nov.3, 2021 

 

1 

 

The principles of reinforcement learning present a 

normative account firmly related to neuroscience and 

psychological viewpoints on how animals or humans 

survive and find their optimal state-action values of 

an environment. In order to use reinforcement 

learning successfully in conditions approaching real-

world application complexity, however, agents are 

confronted with a challenging task: they need to 

obtain correct information of the environment from 

various kinds of sensors and manage these to generate 

optimal state-action values from experience to new 

conditions and also for long-term survival. Several 

dedicated approaches have been developed to 

improve reinforcement learning performances—

DQN, Double DQN, SARSA name a few. Since 

reinforcement learning tasks require maximizing a 

reward function for the long term, we consider them 

as challenging optimization problems. Classical deep 

Q-network (DQN) with Backpropagation (BP) can 

solve challenging reinforcement learning problems 

like classic Atari games and robotics problems. 

However, DQN with BP usually takes a long time to 

train and difficult to get convergence in a short 

training. In this paper, we optimize DQN with Genetic 

Algorithms (GA) for a reinforcement learning 

problem. We also provide comparison results 

between DQN with GA and traditional DQN to show 

how efficient this method is compared to the standard 

DQN. The results demonstrate that DQN with GA has 

better results on CartPole problem. 

Keywords: Deep Q-Networks, reinforcement learning, 

Genetic Algorithm.  

1.   INTRODUCTION 

Developing the human and cognitive skills for agents 

such as robots and intelligent systems to perform 

challenging tasks in a dynamic and challenging 

environment is a primary goal of reinforcement learning 

in a real-world. Deep Q-network with experience replay 

has fascinated performance and reached the human-like 

level control to play classic Atari game environment in 

the previous work [1]. In the manipulation and navigation 

task, the reinforcement learning (RL) approach opens the 

chance for robotics and many other problems to have 

human abilities by directly learning manipulation and 

navigation from various sensory inputs such as image, 

force, and sound. Initial accomplishments in the field 

were promising; however, they showed some inherent 

problems for RL to solve real-world robotic manipulation 

applications.  

Numerous deep-Q Networks and its modification have 

been developed to optimize and find the state-action 

values on reinforcement learning discrete problems, such 

as classical Atari games, collision avoidance in robotics 

navigation, and some manipulation problems with a 

monocular camera [1]–[6]. Even though this model may 

eventually generate impressive results, it leads to 

overestimating state-action values and needs a high 

computation cost to train. 

  They all approximate gradients in a Deep Neural 

Network (DNN) and optimize those parameters via 

stochastic gradient descent/ascent (though they do not 

need differentiating through the reward function, e.g. a 

simulator). Several results [2], [3], [7]–[9] from past 

decade have proven the effectiveness of  BP applied to 

deep neural networks in conventional reinforcement 

learning tasks. However, DQN with BP usually takes a 

long time to train, and it is challenging to get 

convergence in a short time of training, and it may get 

trap in local optima. Stuck in local optima indicates when 

updating the weights, which minimize the temporal-

difference error value, which is not necessarily the 

smallest one at all other possible value [10]. One of the 

techniques that can be used to overcome computational 

costs is Genetic Algorithms (GA). GA enables to train a 

Convolutional Neural Networks (CNN) and fully 

connected networks (FCN) for the Q-value estimation 

without any gradient-based computations required. 

Therefore, this paper investigates and compares GA 

performance as the gradient-free method to solve the 

reinforcement learning problem. We provide comparison 

results between deep Q-networks with GA and traditional 

DQN in order to show the effectiveness of each method 

for reinforcement learning problem from OpenAI gym 
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simulation. This paper is organized as follows. Section 2 

discuss the background and brief fundamental theory of 

Q-Convolutional neural Networks. Section 3 explains the 

Deep Q-Networks trained with GA. Section 4 shows 

numerical simulation results using OpenAI Gym 

environment. Finally, Section 5 discuss the essence of the 

proposed method and discusses the future direction of 

this research.     

2. BACKGROUND 

A reinforcement learning mechanism comprises an agent 

that detects an environment in a specific state and takes 

actions to maximize future rewards [11]. The agent 

receives only a state and reward information through the 

high dimensional sensory input, and it can only affect the 

environment through its actions, as described in Figure 1. 

The goal is to maximize the total discounted reward it 

receives. Q-Learning is one approach for obtaining the 

optimized reward, in which the agent learns the action-

value function, Q, of its policy and uses this to improve 

the policy iteratively[12]. Equation 1 is defined the 

temporal-difference (TD) error of 𝑄 : 

𝛿𝑄 = 𝑄(𝑠𝑡 , 𝑎𝑡) −  (𝑟𝑡+1 + 𝛾 max
𝑎

𝑄(𝑠𝑡1 , 𝑎)) (1) 

𝑠𝑡 , 𝑎𝑡  and 𝑟𝑡  represent state, action and reward 

respectively in the time-step  𝑡, then the discount factor 

parameter is denoted by 𝛾 that will affect the long-term 

rewards on the 𝛿𝑄 ,  and the estimated action-value 

function represents by 𝑄(𝑠, 𝑎). Traditionally, the most 

basic Q-Learning algorithms are based on approximating 

the value function and updating with TD-error using 

tabular method. However, if we have high dimensional 

input with image and high dimensional discrete output of 

the Q function, therefore, we need to approximate the 

action-value function using Convolutional Neural 

Networks with BP for the standard Deep Q-Networks 

(DQN) that shown in Figure 2.  

Algorithm 1 is our baseline performance to compare 

DQN with GA and the basis for incorporating GA as an 

optimizer for the NN weight update mechanism. The 

agent decides and acts by an epsilon greedy policy-based. 

Moreover, the agent's previous experience can also be 

reused through experience replay. Q-value action 

Algorithm 1 Deep Q-Network with experience replay 
Initialize replay buffer d to capacity n 

Initialize action-value function 𝑄 with weights 𝜃 

Initialize target action-value function �̂� with weights 𝜃− = 𝜃 

For episode =1, m do 

Initialize sequence 𝑠1 = {𝑥1} and preprocessed sequence 

∅1 = ∅(𝑠1)   
For t =1, T do 

With probability ℰ choose a random action 𝑎𝑡 
Otherwise select 𝑎𝑡 = argmax𝑎𝑄(∅(𝑠𝑡), 𝑎; 𝜃) 
Execute action 𝑎𝑡 in emulator and observe reward 𝑟𝑡 

and image 𝑥𝑡+1 

Set 𝑠𝑡+1 = 𝑠𝑡,𝑎𝑡 , 𝑥𝑡+1 and preprocess  ∅𝑡+1 =

∅(𝑠𝑡+1)  
Store transition (∅𝑡, 𝑎𝑡, 𝑟𝑡 , ∅𝑡+1) in d 

Sample random minibatch of transitions 

(∅𝑡, 𝑎𝑡, 𝑟𝑡 , ∅𝑡+1) from d 

Set 𝛾𝑗 =

 {
𝑟𝑗                      if episode terminates ate step 𝑗 + 1 

𝑟𝑗 + 𝛾 max𝑎`�̂� (∅𝑗+1, 𝑎`; 𝜃−)         otherwise    
 

Perform a gradient descent step on (𝛾𝑗 −

 𝑄(∅𝑗, 𝑎𝑗 , 𝜃))2 with respect to the network 

parameters 𝜃 

Every C steps reset �̂� =  𝑄 

End For 

End For 

 

Figure 1. Agent and environment relationship in 

reinforcement learning, where the agent obtained 

the state of the environment and the reward, uses 

the information to decide an action to do. 

 

Figure 2. Q-learning and Deep Q-Networks 

schematics comparison. 

 

 

Figure 3. DQN with Experience Replay diagram. 
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approximation in neural networks, especially at lower 

learning rates, needs several BP processes and 

optimization steps to get optimal values. Reusing 

previous experience data, particularly in mini-batches to 

update the neural network, dramatically aids in 

converging the Q-network to optimal action values. 

Figure 3. describes the flowchart of how the conventional 

Deep Q-Networks used the traditional optimizers to 

update the weights from the gradient calculation of BP. 

3. DEEP Q-NETWORKS TRAINED WITH GENETICS 

ALGORITHM 

In this part, we will explain how DQN with GA 

methods can be implemented for reinforcement learning 

and how it become alternative to the conventional 

backpropagation methods of CNN training. The 

Convolutional Neural Network (CNN) has several layers, 

such as convolution, pooling, and fully connected layers. 

The weight parameter of the convolution filters and fully 

connected CNN layers affects the optimal result of Q-

value action. Consequently, these weights play an 

essential role in Q-value accuracy in DQN. During the 

training phase of the DQN, the weights are updated 

continuously to achieve a minimum TD-error rate. 

Therefore, selecting suitable approach to optimize the 

weight in network architecture has become essential in 

this research field.  

Furthermore, the challenge of applying a genetic 

algorithm to train a deep convolutional Q-network is 

interpreting the problem from the field of CNN to the 

mechanism of genetic algorithms. Figure 4 shows a block 

diagram of our proposed method and illustrates how we 

implement and map the problem and the model are 

explained below: 

• Input layer: This layer fills the input images and 

passes them to the convolutional layer. In our 

scheme, inputs are used for Cartpole balancing.  

The details will be explained in the experimental 

results section. 

• Convolutional layer: This layer connects the 

convolution method on input images using kernels 

(filters) to produce the feature map. These filters 

of weights are initialized randomly, applying 

either normal or uniform distribution. 

• Pooling layer: This part is executed after the 

convolution step. An average pooling function is 

used to decrease the feature map size. This 

function computes the mean of each filter of the 

convolutional layer. 

• Activation layer: we used ReLU activation 

function (with formulation form of y =
 max (0, x))  to deal with non-linearity in all 

convolutional and pooling layers. 

• Fully connected layer: after the convolution and 

pooling steps, the whole matrix is transformed into 

a single vector by applying the flattening 

procedure. This vector is then fed to the fully 

connected layer of the network as its input neurons. 

• The fully connected layer includes an input layer, 

some hidden layers, and one output layer.  The 

hidden layer resides between the input and output 

layers and transforms the input data to the output 

layer. Finally, the output layer is a vector that 

depends on the action dimension of each agent. 

The input of convolutional layers and the design of 

fully connected layers depend on each agent state 

(observation) and output dimension of the agent. After 

building the CNN, the entire method is trained. Training  

 

Figure 4. Deep Convolutional Q-Networks with Genetic Algorithm. 
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refers to updating the weights of the CNN until find the 

most optimal Q-action value. The optimal output of Q-

action value on the CNN highly depends on the weights 

in all layers. We improve this model using the gradient-

free method such as GA. Because applying matrix form 

makes the computation of the CNN more convenient, all 

the weights of the network are collected in a matrix for 

further computation. However, the initial population of 

the GA is reshaped in one-dimensional vectors. The 

weight matrix is converted to a vector to be used as the 

initialization population of the GA. Algorithm 2 

summarizes the rest of the algorithm of DQN with GA. 

In this paper, we used steady-state selection to choose 

individual for new generation [13]. To realize the 

crossover between the selected parents, we used single 

point crossover and we used random mutation to changes 

the values to some genes randomly. Technically, we used 

all the evolutionary function using PyGad [14] and for 

the deep Q-networks frameworks we used Pytorch.  

4. SIMULATION RESULTS  

This section experiment explained how to train DQN 

with GA agent on the CartPole-v0 problem from the 

OpenAI Gym [15] as shown in Figure 5(a). The CartPole-

V0 has to choose between two moves - moving the cart 

left or right - so that the pole remains upright.  While the 

agent observes the state of the environment and takes 

action, the environment shifts to a new position. It returns 

a reward that shows the results of the action. In this task, 

the feedback rewards are +1 for each incremental 

timestep, and the environment stops if the shaft drops 

over too far or the CartPole shifts more than 2.4 units 

apart from the middle position. In other words, better-

performing scenarios will run for a longer duration, 

accumulating bigger rewards value. Therefore, we 

compared the conventional DQN to DQN with GA in this 

section.   

The CartPole task is designed so that the inputs to the 

Multi-Layer Perceptron networks are 4 real values 

denoting the environment state (position, velocity, etc.). 

However, CNN can solve the task by looking at the 

scene, so we used a screen patch centered on the cart as 

an input of convolutional networks. Then, we use a basic 

image preprocessing step to reduce the input 

dimensionality and get a square image centered on a cart 

as shown in Figure.5(b).  Therefore, we get the screen 

height and width are close to 40x90. We run the 

Algorithm 2: Deep Q-network with Genetic Algorithm 

Initialize replay buffer 𝑑 to capacity  𝑛 

Initialize replay population size  𝑝 and maximum number of 

generation  𝐺 

Generate the random initial weights of the networks  

Convert the weight matrix to the vector of initial population; 

For 1 to maximum number of generation  𝐺: 

For each agent in population: 

Initialize sequence 𝑠1 = {𝑥1} and preprocessed 

sequence ∅1 = ∅(𝑠1)   
While true: 

With probability ℰ choose a random action 𝑎𝑡 

Otherwise select 𝑎𝑡 = argmax𝑎𝑄(∅(𝑠𝑡), 𝑎; 𝜃) 

Execute action 𝑎𝑡 in emulator and observe 

reward 𝑟𝑡 and image 𝑥𝑡+1 

Set 𝑠𝑡+1 = 𝑠𝑡,𝑎𝑡 , 𝑥𝑡+1 and preprocess  ∅𝑡+1 =
∅(𝑠𝑡+1)  
Store transition (∅𝑡, 𝑎𝑡, 𝑟𝑡, ∅𝑡+1) in d 

Sample random minibatch of transitions 

(∅𝑡, 𝑎𝑡, 𝑟𝑡, ∅𝑡+1) from d 

Set 𝛾𝑗 =

 {
𝑟𝑗     if generation terminates at step 𝑗 + 1 

𝑟𝑗 + 𝛾 max𝑎`�̂� (∅𝑗+1, 𝑎`; 𝜃−)       otherwise    
 

Select individual for new generation (selection) 

      Crossover 

      Mutation 

End 

 

(a) 

 

(b) 

Figure 5. CartPole-V0 environment provided by 

OpenAI Gym; (a) The original screen of CartPole-

V0;(b) The preprocessing results to get the desired 

position of the CartPole 

 

Figure 6. Training Result DQN with GA vs  DQN. 
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simulation training in Intel i7-8750H 2.20GHz, GeForce 

RTX 2070 Max-Q Mobile Version 16GB of RAM.  

The details convolutional layers, fully connected layers 

and the hyperparameters are defined in Table I.  For GA 

parameter, we used 50 number of generations, 5 number 

of parents mating, and 10% for probability of mutation 

parent genes. we used the PyGad Evolutionary library 

and Pytorch with Python 3.7 version. We can see from 

Figure 6. that the DQN with GA has shown impressive 

performance during the training process. Our proposed 

method suddenly reached a 200 reward score in the initial 

episode and then drops to below 50. After that, the reward 

increased with fluctuation progress until 31 episodes. 

After 31 episodes, the reward score got the constant 

maximum score by 200. On the other hand, the traditional 

DQN with experience replay is difficult to reach the 

maximum reward score. In this method, we used the 

Stochastic Gradient Descent optimizer to optimize the 

weight of the CNN. The highest score in this method only 

reached 123. Furthermore, the DQN with GA can spend 

shorter computation time process at 22.267 seconds than 

conventional DQN at 29.66 seconds. 

5. CONCLUSION 

In this work, we have shown a method to optimize the Q-

action value of the deep Q network for the RL problem. 

We used DQN with GA to find the based solution RGB 

images input on Cartpole problem. We compared our 

agent against Traditional DQN with experience replay. 

Furthermore, we showed that DQN with GA has a better 

average reward score and can reach the average score 

faster than the DQN with the experience replay. The 

optimization method inspires us to optimize the  

real-world robotics manipulation and navigation in 

reinforcement learning problem with input pixel in future 

work. 
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