
Title of Your Paper

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021)

Beijing, China, Oct.31-Nov.3, 2021

1

The principles of reinforcement learning present a

normative account firmly related to neuroscience and

psychological viewpoints on how animals or humans

survive and find their optimal state-action values of

an environment. In order to use reinforcement

learning successfully in conditions approaching real-

world application complexity, however, agents are

confronted with a challenging task: they need to

obtain correct information of the environment from

various kinds of sensors and manage these to generate

optimal state-action values from experience to new

conditions and also for long-term survival. Several

dedicated approaches have been developed to

improve reinforcement learning performances—

DQN, Double DQN, SARSA name a few. Since

reinforcement learning tasks require maximizing a

reward function for the long term, we consider them

as challenging optimization problems. Classical deep

Q-network (DQN) with Backpropagation (BP) can

solve challenging reinforcement learning problems

like classic Atari games and robotics problems.

However, DQN with BP usually takes a long time to

train and difficult to get convergence in a short

training. In this paper, we optimize DQN with Genetic

Algorithms (GA) for a reinforcement learning

problem. We also provide comparison results

between DQN with GA and traditional DQN to show

how efficient this method is compared to the standard

DQN. The results demonstrate that DQN with GA has

better results on CartPole problem.

Keywords: Deep Q-Networks, reinforcement learning,

Genetic Algorithm.

1. INTRODUCTION

Developing the human and cognitive skills for agents

such as robots and intelligent systems to perform

challenging tasks in a dynamic and challenging

environment is a primary goal of reinforcement learning

in a real-world. Deep Q-network with experience replay

has fascinated performance and reached the human-like

level control to play classic Atari game environment in

the previous work [1]. In the manipulation and navigation

task, the reinforcement learning (RL) approach opens the

chance for robotics and many other problems to have

human abilities by directly learning manipulation and

navigation from various sensory inputs such as image,

force, and sound. Initial accomplishments in the field

were promising; however, they showed some inherent

problems for RL to solve real-world robotic manipulation

applications.

Numerous deep-Q Networks and its modification have

been developed to optimize and find the state-action

values on reinforcement learning discrete problems, such

as classical Atari games, collision avoidance in robotics

navigation, and some manipulation problems with a

monocular camera [1]–[6]. Even though this model may

eventually generate impressive results, it leads to

overestimating state-action values and needs a high

computation cost to train.

 They all approximate gradients in a Deep Neural

Network (DNN) and optimize those parameters via

stochastic gradient descent/ascent (though they do not

need differentiating through the reward function, e.g. a

simulator). Several results [2], [3], [7]–[9] from past

decade have proven the effectiveness of BP applied to

deep neural networks in conventional reinforcement

learning tasks. However, DQN with BP usually takes a

long time to train, and it is challenging to get

convergence in a short time of training, and it may get

trap in local optima. Stuck in local optima indicates when

updating the weights, which minimize the temporal-

difference error value, which is not necessarily the

smallest one at all other possible value [10]. One of the

techniques that can be used to overcome computational

costs is Genetic Algorithms (GA). GA enables to train a

Convolutional Neural Networks (CNN) and fully

connected networks (FCN) for the Q-value estimation

without any gradient-based computations required.

Therefore, this paper investigates and compares GA

performance as the gradient-free method to solve the

reinforcement learning problem. We provide comparison

results between deep Q-networks with GA and traditional

DQN in order to show the effectiveness of each method

for reinforcement learning problem from OpenAI gym

Mohamad Yani*1, Naoyuki Kubota*2

*1 Tokyo Metropolitan University, Hino, Tokyo, Japan

E-mail: mohamad-yani@ed.tmu.ac.jp
*2 Tokyo Metropolitan University, Hino, Tokyo, Japan

E-mail: kubota@tmu.ac.jp

 Deep Convolutional Networks

with Genetic Algorithm for

Reinforcement Learning Problem

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021)

Beijing, China, Oct.31-Nov.3, 2021

2

simulation. This paper is organized as follows. Section 2

discuss the background and brief fundamental theory of

Q-Convolutional neural Networks. Section 3 explains the

Deep Q-Networks trained with GA. Section 4 shows

numerical simulation results using OpenAI Gym

environment. Finally, Section 5 discuss the essence of the

proposed method and discusses the future direction of

this research.

2. BACKGROUND

A reinforcement learning mechanism comprises an agent

that detects an environment in a specific state and takes

actions to maximize future rewards [11]. The agent

receives only a state and reward information through the

high dimensional sensory input, and it can only affect the

environment through its actions, as described in Figure 1.

The goal is to maximize the total discounted reward it

receives. Q-Learning is one approach for obtaining the

optimized reward, in which the agent learns the action-

value function, Q, of its policy and uses this to improve

the policy iteratively[12]. Equation 1 is defined the

temporal-difference (TD) error of 𝑄 :

𝛿𝑄 = 𝑄(𝑠𝑡 , 𝑎𝑡) − (𝑟𝑡+1 + 𝛾 max
𝑎

𝑄(𝑠𝑡1 , 𝑎)) (1)

𝑠𝑡 , 𝑎𝑡 and 𝑟𝑡 represent state, action and reward

respectively in the time-step 𝑡, then the discount factor

parameter is denoted by 𝛾 that will affect the long-term

rewards on the 𝛿𝑄 , and the estimated action-value

function represents by 𝑄(𝑠, 𝑎). Traditionally, the most

basic Q-Learning algorithms are based on approximating

the value function and updating with TD-error using

tabular method. However, if we have high dimensional

input with image and high dimensional discrete output of

the Q function, therefore, we need to approximate the

action-value function using Convolutional Neural

Networks with BP for the standard Deep Q-Networks

(DQN) that shown in Figure 2.

Algorithm 1 is our baseline performance to compare

DQN with GA and the basis for incorporating GA as an

optimizer for the NN weight update mechanism. The

agent decides and acts by an epsilon greedy policy-based.

Moreover, the agent's previous experience can also be

reused through experience replay. Q-value action

Algorithm 1 Deep Q-Network with experience replay
Initialize replay buffer d to capacity n

Initialize action-value function 𝑄 with weights 𝜃

Initialize target action-value function �̂� with weights 𝜃− = 𝜃

For episode =1, m do

Initialize sequence 𝑠1 = {𝑥1} and preprocessed sequence

∅1 = ∅(𝑠1)
For t =1, T do

With probability ℰ choose a random action 𝑎𝑡
Otherwise select 𝑎𝑡 = argmax𝑎𝑄(∅(𝑠𝑡), 𝑎; 𝜃)
Execute action 𝑎𝑡 in emulator and observe reward 𝑟𝑡

and image 𝑥𝑡+1

Set 𝑠𝑡+1 = 𝑠𝑡,𝑎𝑡 , 𝑥𝑡+1 and preprocess ∅𝑡+1 =

∅(𝑠𝑡+1)
Store transition (∅𝑡, 𝑎𝑡, 𝑟𝑡 , ∅𝑡+1) in d

Sample random minibatch of transitions

(∅𝑡, 𝑎𝑡, 𝑟𝑡 , ∅𝑡+1) from d

Set 𝛾𝑗 =

 {
𝑟𝑗 if episode terminates ate step 𝑗 + 1

𝑟𝑗 + 𝛾 max𝑎`�̂� (∅𝑗+1, 𝑎`; 𝜃−) otherwise

Perform a gradient descent step on (𝛾𝑗 −

 𝑄(∅𝑗, 𝑎𝑗 , 𝜃))2 with respect to the network

parameters 𝜃

Every C steps reset �̂� = 𝑄

End For

End For

Figure 1. Agent and environment relationship in

reinforcement learning, where the agent obtained

the state of the environment and the reward, uses

the information to decide an action to do.

Figure 2. Q-learning and Deep Q-Networks

schematics comparison.

Figure 3. DQN with Experience Replay diagram.

Title of Your Paper

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021)

Beijing, China, Oct.31-Nov.3, 2021

3

approximation in neural networks, especially at lower

learning rates, needs several BP processes and

optimization steps to get optimal values. Reusing

previous experience data, particularly in mini-batches to

update the neural network, dramatically aids in

converging the Q-network to optimal action values.

Figure 3. describes the flowchart of how the conventional

Deep Q-Networks used the traditional optimizers to

update the weights from the gradient calculation of BP.

3. DEEP Q-NETWORKS TRAINED WITH GENETICS

ALGORITHM

In this part, we will explain how DQN with GA

methods can be implemented for reinforcement learning

and how it become alternative to the conventional

backpropagation methods of CNN training. The

Convolutional Neural Network (CNN) has several layers,

such as convolution, pooling, and fully connected layers.

The weight parameter of the convolution filters and fully

connected CNN layers affects the optimal result of Q-

value action. Consequently, these weights play an

essential role in Q-value accuracy in DQN. During the

training phase of the DQN, the weights are updated

continuously to achieve a minimum TD-error rate.

Therefore, selecting suitable approach to optimize the

weight in network architecture has become essential in

this research field.

Furthermore, the challenge of applying a genetic

algorithm to train a deep convolutional Q-network is

interpreting the problem from the field of CNN to the

mechanism of genetic algorithms. Figure 4 shows a block

diagram of our proposed method and illustrates how we

implement and map the problem and the model are

explained below:

• Input layer: This layer fills the input images and

passes them to the convolutional layer. In our

scheme, inputs are used for Cartpole balancing.

The details will be explained in the experimental

results section.

• Convolutional layer: This layer connects the

convolution method on input images using kernels

(filters) to produce the feature map. These filters

of weights are initialized randomly, applying

either normal or uniform distribution.

• Pooling layer: This part is executed after the

convolution step. An average pooling function is

used to decrease the feature map size. This

function computes the mean of each filter of the

convolutional layer.

• Activation layer: we used ReLU activation

function (with formulation form of y =
 max (0, x)) to deal with non-linearity in all

convolutional and pooling layers.

• Fully connected layer: after the convolution and

pooling steps, the whole matrix is transformed into

a single vector by applying the flattening

procedure. This vector is then fed to the fully

connected layer of the network as its input neurons.

• The fully connected layer includes an input layer,

some hidden layers, and one output layer. The

hidden layer resides between the input and output

layers and transforms the input data to the output

layer. Finally, the output layer is a vector that

depends on the action dimension of each agent.

The input of convolutional layers and the design of

fully connected layers depend on each agent state

(observation) and output dimension of the agent. After

building the CNN, the entire method is trained. Training

Figure 4. Deep Convolutional Q-Networks with Genetic Algorithm.

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021)

Beijing, China, Oct.31-Nov.3, 2021

4

refers to updating the weights of the CNN until find the

most optimal Q-action value. The optimal output of Q-

action value on the CNN highly depends on the weights

in all layers. We improve this model using the gradient-

free method such as GA. Because applying matrix form

makes the computation of the CNN more convenient, all

the weights of the network are collected in a matrix for

further computation. However, the initial population of

the GA is reshaped in one-dimensional vectors. The

weight matrix is converted to a vector to be used as the

initialization population of the GA. Algorithm 2

summarizes the rest of the algorithm of DQN with GA.

In this paper, we used steady-state selection to choose

individual for new generation [13]. To realize the

crossover between the selected parents, we used single

point crossover and we used random mutation to changes

the values to some genes randomly. Technically, we used

all the evolutionary function using PyGad [14] and for

the deep Q-networks frameworks we used Pytorch.

4. SIMULATION RESULTS

This section experiment explained how to train DQN

with GA agent on the CartPole-v0 problem from the

OpenAI Gym [15] as shown in Figure 5(a). The CartPole-

V0 has to choose between two moves - moving the cart

left or right - so that the pole remains upright. While the

agent observes the state of the environment and takes

action, the environment shifts to a new position. It returns

a reward that shows the results of the action. In this task,

the feedback rewards are +1 for each incremental

timestep, and the environment stops if the shaft drops

over too far or the CartPole shifts more than 2.4 units

apart from the middle position. In other words, better-

performing scenarios will run for a longer duration,

accumulating bigger rewards value. Therefore, we

compared the conventional DQN to DQN with GA in this

section.

The CartPole task is designed so that the inputs to the

Multi-Layer Perceptron networks are 4 real values

denoting the environment state (position, velocity, etc.).

However, CNN can solve the task by looking at the

scene, so we used a screen patch centered on the cart as

an input of convolutional networks. Then, we use a basic

image preprocessing step to reduce the input

dimensionality and get a square image centered on a cart

as shown in Figure.5(b). Therefore, we get the screen

height and width are close to 40x90. We run the

Algorithm 2: Deep Q-network with Genetic Algorithm

Initialize replay buffer 𝑑 to capacity 𝑛

Initialize replay population size 𝑝 and maximum number of

generation 𝐺

Generate the random initial weights of the networks

Convert the weight matrix to the vector of initial population;

For 1 to maximum number of generation 𝐺:

For each agent in population:

Initialize sequence 𝑠1 = {𝑥1} and preprocessed

sequence ∅1 = ∅(𝑠1)
While true:

With probability ℰ choose a random action 𝑎𝑡

Otherwise select 𝑎𝑡 = argmax𝑎𝑄(∅(𝑠𝑡), 𝑎; 𝜃)

Execute action 𝑎𝑡 in emulator and observe

reward 𝑟𝑡 and image 𝑥𝑡+1

Set 𝑠𝑡+1 = 𝑠𝑡,𝑎𝑡 , 𝑥𝑡+1 and preprocess ∅𝑡+1 =
∅(𝑠𝑡+1)
Store transition (∅𝑡, 𝑎𝑡, 𝑟𝑡, ∅𝑡+1) in d

Sample random minibatch of transitions

(∅𝑡, 𝑎𝑡, 𝑟𝑡, ∅𝑡+1) from d

Set 𝛾𝑗 =

 {
𝑟𝑗 if generation terminates at step 𝑗 + 1

𝑟𝑗 + 𝛾 max𝑎`�̂� (∅𝑗+1, 𝑎`; 𝜃−) otherwise

Select individual for new generation (selection)

 Crossover

 Mutation

End

(a)

(b)

Figure 5. CartPole-V0 environment provided by

OpenAI Gym; (a) The original screen of CartPole-

V0;(b) The preprocessing results to get the desired

position of the CartPole

Figure 6. Training Result DQN with GA vs DQN.

0

50

100

150

200

250

1 11 21 31 41

Deep Convolutional Q-
Networks with GA

Deep Convolutional Q-
Networks

Title of Your Paper

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021)

Beijing, China, Oct.31-Nov.3, 2021

5

simulation training in Intel i7-8750H 2.20GHz, GeForce

RTX 2070 Max-Q Mobile Version 16GB of RAM.

The details convolutional layers, fully connected layers

and the hyperparameters are defined in Table I. For GA

parameter, we used 50 number of generations, 5 number

of parents mating, and 10% for probability of mutation

parent genes. we used the PyGad Evolutionary library

and Pytorch with Python 3.7 version. We can see from

Figure 6. that the DQN with GA has shown impressive

performance during the training process. Our proposed

method suddenly reached a 200 reward score in the initial

episode and then drops to below 50. After that, the reward

increased with fluctuation progress until 31 episodes.

After 31 episodes, the reward score got the constant

maximum score by 200. On the other hand, the traditional

DQN with experience replay is difficult to reach the

maximum reward score. In this method, we used the

Stochastic Gradient Descent optimizer to optimize the

weight of the CNN. The highest score in this method only

reached 123. Furthermore, the DQN with GA can spend

shorter computation time process at 22.267 seconds than

conventional DQN at 29.66 seconds.

5. CONCLUSION

In this work, we have shown a method to optimize the Q-

action value of the deep Q network for the RL problem.

We used DQN with GA to find the based solution RGB

images input on Cartpole problem. We compared our

agent against Traditional DQN with experience replay.

Furthermore, we showed that DQN with GA has a better

average reward score and can reach the average score

faster than the DQN with the experience replay. The

optimization method inspires us to optimize the

real-world robotics manipulation and navigation in

reinforcement learning problem with input pixel in future

work.

Acknowledgements

This work was partially supported by JST [Moonshot

RnD][Grant Number JP- MJMS2034].

REFERENCES:

[1] S. L. Dmitry Kalashnikov, Alex Irpan, Peter

Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,

Deirdre Quillen, Ethan Holly, Mrinal

Kalakrishnan, Vincent Vanhoucke, “Scalable Deep

Reinforcement Learning for Vision-Based Robotic

Manipulation,” in 2nd Conference on Robot

Learning (CoRL), 2018, no. CoRL, pp. 6244–

6251.

[2] V. Mnih et al., “Human-level control through deep

reinforcement learning,” Nature, vol. 518, no.

7540, pp. 529–533, 2015.

[3] S. Iqbal et al., “Directional Semantic Grasping of

Real-World Objects: From Simulation to Reality,”

2019.

[4] L. Xie, S. Wang, A. Markham, and N. Trigoni,

“Towards Monocular Vision based Obstacle

Avoidance through Deep Reinforcement

Learning,” 2017.

[5] Y. Hou, L. Liu, Q. Wei, X. Xu, and C. Chen, “A

novel DDPG method with prioritized experience

replay,” in 2017 IEEE International Conference on

Systems, Man, and Cybernetics, SMC 2017, 2017.

[6] C. Wilson, A. Riccardi, and E. Minisci, “A novel

update mechanism for Q-Networks based on

extreme learning machines,” IEEE World Congr.

Comput. Intell. 2020, 2020.

[7] Y. Huang, “Deep Q-networks,” in Deep

Reinforcement Learning: Fundamentals, Research

and Applications, 2020.

[8] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy,

“Deep exploration via bootstrapped DQN,” in

Advances in Neural Information Processing

Systems, 2016.

[9] R. Arakawa, S. Kobayashi, Y. Unno, Y. Tsuboi,

and S. ichi Maeda, “DQN-TAMER: Human-in-

the-loop reinforcement learning with intractable

feedback,” arXiv, 2018.

[10] J. Li, J. Cheng, J. Shi, and F. Huang, “Brief

Introduction of Back Propagation (BP) Neural

Description of BP Algorithm in Mathematics,”

Adv. Comput. Sci. Inf. Eng., vol. 2, pp. 553–558,

TABLE I. CNN LAYERS SIZE AND HYPERPARAMETERS

Env

Convolution

Layers
(in_channels,

out_channels,
kernel_size,
stride)

FCN
Layers

(input,

hidden,

outputs)

Input

screen

(h x w)

Epsilon

Decay

Batch

Size
Gamma

Epsilon

Start

Epsilon

End

Target

Update

Mem

Replay

Cartpole-v0

Conv1(3, 16,

kernel_size=5,

stride=2)

Conv2(16, 32,

kernel_size=5,

stride=2)

Conv3(32, 32,
kernel_size=4,

stride=2)

(32 x 32,

512, 2)
40 x 90 200 128 0.999 0.9 0.05 10 10000

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021)

Beijing, China, Oct.31-Nov.3, 2021

6

2012.

[11] R. S. Sutton and A. G. Barto, Reinforcement

Leaning. 2018.

[12] B. J. A. Kröse, “Robotics and Autonomous

Systems Learning from delayed rewards,” Rob.

Auton. Syst., vol. 15, pp. 233–235, 1995.

[13] C. W. Ahn, Advances in Evolutionary Algorithms,

vol. 18. Berlin/Heidelberg: Springer-Verlag, 2006.

[14] A. F. Gad, “PyGAD: An Intuitive Genetic

Algorithm Python Library,” no. April 2020, 2021.

[15] A. Rana, “Introduction: Reinforcement Learning

with OpenAI Gym,” Towards Data Science, 2018.

.

	1. Introduction
	2. Background
	3. Deep Q-Networks Trained With Genetics Algorithm
	4. Simulation Results
	5. Conclusion
	Acknowledgements

	References:

