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Abstract. Recently, a multi-scopic approach has been 
applied to various research topics owing to the 
technological progress in computer science. For 
example, we can discuss a phenomenon from three 
different levels of macro-, meso-, and micro- scopic 
simulation. In the microscopic simulation, we can deal 
with the dynamics inside objects and internal states. 
In the mesoscopic simulation, we can deal with 
approximated dynamics between objects in a 
surrounding environment. In the macroscopic 
simulation, we can deal with spatiotemporal 
relationships between objects without dynamics. In 
this paper, we propose a multi-scopic simulation to 
discuss human-robot interactions. First, we discuss 
how to realize multi-scopic simulation for human-
robot interactions. Next, we apply multi-objective 
behavior coordination to represent human and robot 
behaviors in mesoscopic simulation. Next, we apply 
the proposed method to navigation tasks of mobility 
support robots. Finally, we discuss the effectiveness of 
the proposed method through several simulation 
results. 
 
Keywords: Multi-scopic Simulations, Topological 
Mapping, Multi-objective Behavior Coordination, 
Mobility Support Robots 
 

1.   INTRODUCTION 
Recently, the research on cyber-physical systems [1] and 
digital twin [2] has been done to simulate and analyze the 
real world in the cyber space. Furthermore, a multi-
scopic approach has been applied to various research 
topics owing to the technological progress in computer 
science. For example, we can discuss a phenomenon 
from three different levels of macro-, meso-, and micro- 
scopic simulation. In the microscopic simulation, we can 
deal with the dynamics inside objects and internal states. 
In the mesoscopic simulation, we can deal with 
approximated dynamics between objects in a 
surrounding environment. In the macroscopic simulation, 
we can deal with spatiotemporal relationships between 
objects without dynamics. In order to simulate a real-
world phenomenon, we often have to extract features and 

structures based on graph theory and topology [3-6]. For 
example, topological mapping methods are used for 3D 
modeling available for accurate physics simulation from 
the microscopic point of view [7,8]. Graph-based 
methods are used for knowledge representation available 
for huge-scale rule-based inference from the 
macroscopic point of view. Furthermore, we can build a 
topological model and knowledge according to a 
mesoscopic modeling and simulation approach to 
connect microscopic models with macroscopic 
knowledge, called Topological Twin. The aim of 
topological twin is to (1) extract topological structures 
hidden implicitly in the real world, (2) reproduce them 
explicitly in the cyber world, and (3) Simulate and 
analyze the real world in the cyber world. Furthermore, 
we must deal with social or mental world in addition to 
cyber-physical systems. Figure 1 shows topological twin 
in cyber-physical-social systems. In this paper, we 
propose a multi-scopic simulation to discuss human-
robot interactions.  

First, we discuss how to realize multi-scopic 
simulation for human-robot interactions. We discuss 
human-robot interactions from the spatial points of view, 
such as intimate, personal, behavioral, and social space. 
Next, we apply multi-objective behavior coordination [8-
11] to represent human and robot behaviors in 
mesoscopic simulation. Basically, we use collision 
avoidance, target tracing from the viewpoint of 
movement, and gestural interactions and behaviors on 
activities of daily living (ADL). Next, we apply the 
proposed method to navigation tasks of mobility support 
robots. Finally, we discuss the effectiveness of the 
proposed method through several simulation results. 

This paper is organized as follows. Section 2 proposes 
multi-scopic simulations for human-robot interactions. 
Section 3 explains a method of multi-objective behavior 
coordination to control human and robotic behaviors. 
Section 4 shows several numerical simulation results and 
discuss how to link the mesoscopic and macroscopic 
simulations. Finally, Section 5 discuss the essence of the 
proposed method and discusses the future direction of 
this research.  
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Fig. 1. Topological twin in cyber-physical-social systems. 

   
(a) PALRO (Fujisoft, Japan) 

 

   
(b) Human support robot (HSR, Toyota, Japan) 

 

   
(c) An example of smart senior car 

 

        
(d) Mobility support robot 

Fig. 2. Robot partners. 

2.  MULTI-SCOPIC SIMULATION FOR HUMAN-
ROBOT INTERACTIONS 
2.1. Robot Partners 
Recently, various types of robot partners have been 
developed to realize human-robot interaction [15-17]. For 
example, communication robots are used to realize 

information support service for elderly care, child nursing 
and others. Mobile robots are used for delivery service and 
mobility supports. The mobility support is very important 
for elderly people to enhance the motivation for going out 
and to prevent them from locomotive syndrome and 
dementia.  

We have developed and used various types of robot 
partners such as MOBiMac, Palro, Palmi, HSR, iPhonoid, 
iPadrone, Animaloid for the support to elderly people, 
rehabilitation support, and robot edutainment [11-17]. Palro 
has been applied to edutainment [18,19] and exercise 
support [20]. Figure 2 (a) shows a humanoid robot Palmi 
developed by Fujisoft Inc. and DMM.com. Palmi has 20 
degree-of-freedom and Palmi is equipped with various 
sensors such as gyro, accelerometer, infrared LED, camera, 
microphone and speaker. HSR is a home-care robot with 
five degree-of-freedom of an arm consisting of four 
revolving joints and a prismatic shoulder joint, with a 
payload of 1.2kg [21]. Moreover, the robot can move 
omnidirectionally up to 20cm/s with a differential wheel and 
central yaw joint placed in the base. An RGBD head camera, 
a pair of wide-angle RGB cameras in a stereo setup, and a 
hand RGB camera are equipped as the integrated perception 
system. For the navigation system, HSR used the IMU and 
laser range finder in the base that can be used for 2D map 
construction and localization Furthermore, we have 
developed smart senior cars for elderly people shown in 
Fig.2 (c), but we will use electric wheelchairs (Fig.2 (d)) in 
this research to enhance the human mobility in a room.  
 

2.2. Multi-scopic Simulation 
Figure 3 shows a concept of multi-scopic simulation. As we 
explained in the introduction, we deal with three different 
scopes of micro-, meso-, and macro- scopic simulations.  

We deal with the dynamics inside objects and internal 
states in the microscopic simulation. In order to realize 
the human-robot physical interactions, we will use a 
method of estimating human muscle state by using 
inverse dynamics based on neuro-musculoskeletal 
simulations. Furthermore, we consider the concept of 
affordance and effectivity discussed in ecological 
psychology. In general, affordance is defined an 
opportunity for action offered by the environment and the 
effectivity is defined as the possibility of realizing action 
restricted by the current posture. If the posture is changed, 
its corresponding possible action is also changed. 
Therefore, a suitable posture is required to specify its 
corresponding affordance. The goal-specific information 
is specified as affordance in an intentional behavior, 
while the goal-relevant control is specified as effectivity. 
In this paper, an action is defined as a motion sequence 
observed by an internal description, while the behavior is 
defined as a motion sequence followed by an external 
description. Therefore, while action control is done in the 
microscopic level of intimate space, behavior control is 
done in the mesoscopic level of personal or behavioral 
space.  

In the mesoscopic simulation, we deal with 
approximated rigid body dynamics between objects in a 
surrounding environment of humans and robots. An 
intentional behavior is done based on the coupling of 
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perceptual system and action system under the constraint 
based on social knowledge and rules from the 
macroscopic level. A behavior is described by task-
dependent rule sets.  

In the macroscopic simulation, we deal with 
spatiotemporal relationships between objects without 
using dynamics. A task is described as a sequence of 
behaviors and a path is described as a sequence of nodes 
in a topological map. Task domain knowledge is 
represented by graph neural networks and knowledge 
graphs.  

3. MULTI-OBJECTIVE BEHAVIOR COORDINATION 
3.1. Mesoscopic Simulations  
In this paper, we focus on the mesoscopic simulation of 
mobility support robots linked to macroscopic simulation. 
We assume P people and R robots in the simulation. We use 
two types of mobility support robots; electric wheelchairs 
and robot assist walkers where a robot is controlled by 
independent two independent wheel drives (Fig.4). Each 
person and robot can take multi-objective behaviors of 
collision avoidance and target tracing by using fuzzy control 
[18,19]. The position data of humans and robots measured 
in the mesoscopic simulation are transferred to the 
macroscopic simulation through the simple TCP/IP 
communication.  
 

3.2. Fuzzy Control 
A behavior of a person or robot is represented using fuzzy 
rules based on simplified fuzzy inference. It is easy for 
human operators to understand and to design the logical 
structure written by fuzzy rules. In general, a fuzzy IF-
THEN rule using simplified fuzzy inference is described as 
follows, 

 
 IF x1 is Ai,1 and ... and xm is Ai,m  
 THEN y1 is wi,1 and ... and yn is wi,n 

 
where Ai,j and wi,k are a Gaussian membership function for 
the j-th input and a singleton for the k-th output of the i-th 
rule; m and n are the numbers of inputs and outputs, 
respectively. The simplified fuzzy inference is described by, 

          (1) 

            (2) 

             (3) 

where ai,j and bi,j are the central value and the width of the 
membership function Ai,j; r is the number of rules. The 
outputs of the robot are motor output levels. Fuzzy 
controller is used for collision avoidance and target tracing 
behaviors. The inputs to the fuzzy controller for collision 
avoidance and target tracing are the distance to the obstacle 
measured by laser range finder (LRF), and the relative 
direction to a target point, respectively. Basically, a target 
point is given by a human operator. 
 

 
Fig.4. Mesoscopic simulation of humans and mobility support robots. 

 

3.3.    Multi-objective Behavior Coordination 
In general, a mobile robot has a set of behaviors for 
achieving various objectives and must integrate these 
behaviors according to the facing environmental conditions. 
Therefore, we proposed the method for multi-objective 
behavior coordination (Fig.5). This method is composed of 
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Fig.3. Towards cyber-physical system using mobility support robots.  
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a sensory network, behavior coordinator, and behavior 
weight updater.  

The sensory network extracts the perceptual inputs from 
LRF. Figure 5 (a) shows an example of measurement by 
LRF where the number of inputs is 13 (m = 13). In case of 
the collision avoidance behavior, the robot can update the 
attention range according to the facing environmental 
condition. For example, if there are many obstacles in the 
environment, the robot should move slowly towards the 
target point with avoiding collision. On the contrary, if there 
are few obstacles, the robot can move fast towards the target 
point without slowdown. The robot should dynamically 
update the sensing range according to the facing 
environment. The sensory network can control the scalable 
attention range, which adjust the shape of membership 
functions. In this paper, we use two membership functions 
corresponding to the linguistic labels of ‘Dangerous’ and 
‘Safe’ for collision avoidance (Fig.5). When we assume the 
scalability of control rules, the sensory network changes the 
output of fuzzy controller according to the time-series of 
sensory inputs. The attention range to 

 is updated simply as follows, 

     (4) 

where  is an update length; and  are 
minimal and maxaimal attention ranges, respectively  
(Fig.5(b), (c)).  
 

 
(a) Membership function at amax 

 
(a) Membership function at amax 

 

 
(b) Membership function at amin 

Fig.5. Attention range for collision avoidance. 
 

Table 1 shows an example of fuzzy rules for collision 
avoidance where the number of fuzzy rules is 11 (r = 11) 
The number of outputs is 2 (n = 2) corresponding to the 
output levels of actuators of two independent wheel drives.  
For example, the Rule 1 means [if the right side is dangerous 
then fast left-turn]. The robot can turn left because y1 (output 
of left actuator) is smaller than y2 (output of right actuator). 

A behavior weight is assigned to each behavior. Based on 
(3), the final motor output is calculated by 

           (5) 

where yh,k is updated as the output of the h-th behavior from 
yk in (3); b is the number of behaviors; wgth(t) is a behavior 
weight of the h-th behavior over the discrete time step t. By 
updating the behavior weights, the robot can take a multi-
objective behavior according to the time series of perceptual 
information. The update amount of each behavior is 
calculated as follows， 

     (6) 

where Δwgth is the update amount of wgth(t); ui is the 
parameter on the i-th perceptual information; s is the number 
of perceptual inputs; dwh,i is the parameter which represents 
the effecrt of ui to update behavior weights. This method can 
be considered as a mixture of experts if the behavior 
coordinator is considered as a gating network.  
 

Table 1. An example of fuzzy rules for collision avoidance behavior. 
(0: Dangerous, 1: safe in the input xi)  

 
 

     
Fig.5. A method of multi-objective behavior coordination []. 

 
We use an emergency avoidance behavior in addition to 

collision avoidance and target tracing. Figure 6 (a) shows 
the asymmetric personal space for emergency avoidance 
behavior. If the other human or robot enters in the personal 
space, the robot stops and goes back after changing its 
sensing range of LRF. Fig.6 (b) shows an example of the 
emergency avoidance behavior when a human enters in the 
right side. 

α i, j (αmin ≤α i, j ≤αmax )

α i, j ←
α i, j − γ if ∀x j <α i, j

α i, j + γ otherwise

⎧
⎨
⎪

⎩⎪

γ (γ > 0) lmin lmax

yk =
wgth (t) ⋅ yh,k

h=1

b

∑

wgth (t)
h=1

b

∑

Δwgt1
!

Δwgtb

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

dw1,1 ! dw1,s
! " !

dwb,1 ! dwb,s

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

u1
!
us

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x1 x2 x11 x12 x13 y1(L) y2(R)
Rule 1 1 1 1 0 0 0.9 1.0
Rule 2 1 1 0 0 1 0.7 1.0

Rule 11 0 0 1 1 1 1.0 0.9

Coordinator

Action
wgt1(t)

Behavior 1

Behavior 2

Behavior k

Behavior K

En
vi

ro
nm

en
t

wgt2(t)

wgtk(t)

wgtK(t) W
ei

gh
te

d 
av

er
ag

e

Perception Decision Making

•••

•••

Se
ns

or
y 

ne
tw

or
k



Title of Your Paper 
 
 

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021) 
Beijing, China, Oct.31-Nov.3, 2021 

 

5 

 
(a) Personal space for emergency avoidance behavior 

 

 
(b) An example of emergency avoidance behavior 

Fig.6. Emergency avoidance behavior based on personal space. 
 

 
(a)                                   (b)                                    (c) 
 

 
(d)                                   (e)                                    (f) 

Fig.7. Collision avoidance behavior of humans and robots. 
 

 
(a) 

 
(b) 

 
(c) 

Fig.8. An example of meso- and macro- scopic simulations. 
 

 
(a) Temporal trajectories of all humans and robots 

 

 
(b) Trajectories of all humans and robots 

 

 
(c) Topological mapping from trajectories of all humans and robots 

Fig.9. Tracking and movement feature extraction of humans and robots in 
macroscopic simulations. 

 

4. SIMULATION RESULTS 
This section shows simulation results of the proposed 
method. The numbers of humans and mobility support 
robots are 10 (P = 10) and 4 (R = 4), respectively; = 0.2;   
in this simulation. We also use fuzzy control for collision 
avoidance of humans. The position of humans and robots is 
transferred to the macroscopic simulation. 

Figure 7 shows an example of collision avoidance 
behavior of humans and robots. There are two robots 
encountering two humans, but they are avoiding collisions 
each other. Figure 8 shows an example of meso- and macro- 
scopic simulations. The position of a human and robot in the 
mesoscopic simulation is reflected to that in the 
macroscopic simulation. Figure 9 shows (a) Temporal 
trajectories of all humans and robots, (b) Trajectories of all 
humans and robots, and (c) Topological mapping from 

γ
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trajectories of all humans and robots for movement feature 
extraction. We used multi-scale batch-learning growing 
neural gas [22] to extract topological features from the 
trajectory data of humans and robots. The topological 
mapping will be used for the path planning or robots and 
human navigation.  

5. CONCLUSION 
In this paper, we proposed a multi-scopic simulation to 
discuss human-robot interactions. First, we discussed how 
to deal with three different scopes of micro-, meso-, and 
macro- scopic simulations. We deal with the dynamics 
inside objects and internal states in the microscopic 
simulation. While action control is done in the microscopic 
level of intimate space, the behavior control is done in the 
mesoscopic level of personal or behavioral space. In the 
mesoscopic simulation, we deal with approximated rigid 
body dynamics between objects in a surrounding 
environment of humans and robots. Next, we applied multi-
objective behavior coordination to represent human and 
robot behaviors in mesoscopic simulation. Next, we applied 
the proposed method to navigation tasks of mobility support 
robots in the behavioral and personal space. The sensory 
network can update the attention range in the behavior space. 
Furthermore, the proposed method realizes that the robot 
can take an emergency avoidance behavior when other 
humans or robots enter to the personal space. The simulation 
results show that the multi-objective behavior coordination 
can conduct collision avoidance and target tracing. The 
trajectory data are transferred to the macroscopic simulation 
and are used to extract the topological feature of the 
movement of humans and robots. In this way, the simulation 
results show the importance of coupling of mesoscopic 
simulation and microscopic simulations. 

As a future work, we intend to develop a path planning 
method and human navigation in the macroscopic 
simulation and discuss how to use the planned path for 
mobility supports robots in the mesoscopic simulation. 
Furthermore, we will develop a human-robot interaction 
method based on neuro-musculoskeletal models in intimate 
space as the microscopic level. 
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