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The accuracy of kriging interpolation mainly depends
on the selection of the variogram. In actual coal mine
engineering, the number of drilling data in the same
coal working face is small, and the amount of data that
can be used as training is small, which leads to the low
degree of fitting of the traditional variogram model.
Therefore, this paper proposes an automatic fitting
method for the variogram of the support vector regres-
sion machine based on particle swarm optimization
(PSO-SVR). Using the powerful fitting ability of SVR
when dealing with small samples and the powerful pa-
rameter optimization ability of PSO, the variogram
can be reconstructed from actual data. Through the
traditional kriging spherical model, PSO optimized
spherical model (PSO-Sphercial), and SVR model, a
comparative analysis of the fitting correlation with
the method in this paper is carried out. The experi-
mental results show that the PSO-SVR reconstructed
variogram has a higher fitting degree. The proposed
method can provide support for coal seam thickness
prediction and mining.

Keywords: Coal-bearing formation, geological model-
ing, PSO-SVR, variogram

1. Introduction

At present, China’s coal industry is moving towards a
new stage of intelligent mining. Intelligent mines take
intelligent mining as the core and integrate big data appli-
cations as the support to build a new type of green, safe
and efficient mine [1]. However, the uncertainty of geo-
logical conditions restricts the precise mining of intelli-
gent mines. For this reason, the establishment of a high-
precision geological model of coal-bearing formation is a
necessary condition for the realization of intelligent mine
construction. Coal seam thickness variation is the most

common geological phenomenon in coal mines [2]. If
its prediction error is large, it will affect coal mining and
reduce work efficiency. Therefore, reflecting changes in
coal seam thickness has become one of the main goals of
coal-bearing formation geological models [3].

Spatial interpolation is one of the main methods of ge-
ological modeling. The function between the attribute
value and the spatial distribution is obtained through the
discrete sampling point data, and the function is used
to optimally approximate all the adopted point data, and
then the relevant attributes of any point in the distribution
area are calculated [4]. At present, the commonly used
spatial interpolation algorithms include Inverse Distance
Weight (IDW), Radial basis function and kriging inter-
polation. The traditional kriging interpolation constructs
a spatial interpolation model by fitting the existing vari-
ogram [5,6]. In the choice of the theoretical variogram
model, there is a strong human subjectivity, which leads
to the construction of the kriging interpolation accuracy
which needs to be improved. As a more commonly used
theoretical model in the field of coal mines, the spherical
model itself requires more drilling data as training data. In
the actual project, when the amount of drilling data in the
coal working face is small, the fitting degree of the spher-
ical model is poor. As coal mine detection projects con-
tinue to advance, coal workers continue to increase their
requirements for coal seam detection accuracy. Higher-
precision detection results can not only save exploration
time, but also reduce costs. Therefore, the research to
improve the modeling accuracy of a small sample of coal-
bearing formation exhibits high practical engineering sig-
nificance. With the development of artificial intelligence
algorithms, the application of the SVR proposed in [7-9]
has achieved good results in emotion recognition, provid-
ing ideas for modeling small samples of coal-bearing for-
mation.

This paper proposes a Particle Swarm Optimization to
optimize the support vector regression machine method
(PSO-SVR) to automatically fit the experimental vari-
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ogram. When using SVR for small samples, it has
strong generalization ability, low computational complex-
ity, and can overcome the characteristics of Back Prop-
agation neural network (BP) overfitting. Through the
strong group optimization ability of PSO, the penalty fac-
tor c and the kernel parameters g in the SVR are opti-
mized to further improve the fit of the variogram. The
method proposed in this paper can reduce the subjectivity
of the variogram model selection in practical engineer-
ing applications with a small amount of drilling data, im-
prove the accuracy of kriging interpolation, and establish
a more accurate geological model of coal-bearing forma-
tion.At present, this method has not been used to predict
coal seam thickness in small data sets.

2. PSO-SVR Optimized Kriging

The overall structure of the PSO-SVR optimized krig-
ing algorithm proposed in this paper is shown in Fig. 1.

2.1. Variogram in Kriging
Kriging interpolation obtains the data quality by evalu-

ating the error of the estimated prediction value, and uses
the variogram to characterize continuous random vari-
ables. It analyzes the spatial distribution and correlation
between interpolation points and neighboring points to
determine the neighboring areas that affect the attribute
values of the interpolation points. Kriging interpolation
point for each neighboring region given a certain weight,
the interpolation point is estimated by a weighted average
value of the attribute [10,11].

The general formula of kriging interpolation is

Z∗(x) =
n

∑
i=1

λiZ (xi) (i = 1,2, · · · ,n) . . . . (1)

where Z∗(x) is the estimated value of the interpolation
point attribute, The Z (xi) is the i-th attribute values at
neighboring points xi. λi is the weight of the i-th neigh-
boring point, and it needs to meet the two conditions of
unbiasedness and optimality, which are as follows{

∑
n
i=1 λi = 1

σ2 = E [Z∗(x)−Z(x)]2 = min
. . . . . (2)

where σ is the standard deviation between the estimated
value of the interpolation point attribute Z∗(x) and the true
value Z(x).In kriging, the variogram is used to measure
the degree of spatial correlation between sample points.

The spatial distribution of coal seam thickness has the
autocorrelation of regionalized variables, and the spa-
tial variation structure of coal seam thickness can be
expressed according to the characteristics of coal seam
thickness distribution revealed by drilling. Because the
change of coal seam thickness conforms to the charac-
teristics of regionalized variables, regionalized variables
are often characterized by variable difference functions in
geostatistics. Therefore, the experimental variogram of

coal thickness can be calculated with limited observation
points and observation values, and then theoretically fit-
ted.

The sample’s variogram (experimental variogram) for-
mula can be represented as

γ
∗(h) =

1
2Nh

n

∑
i=1

[Z (xi +h)−Z (xi)] . . . . . (3)

where γ∗(h) represents experimental variogram. Nh is the
number of all point pairs separated by h, h represents sep-
aration distance, Z (xi) represents the attribute value at po-
sition xi. In this study, γ∗(h) only depends on the size of
the separation distance and not its direction.

Usually, the theoretical variogram model is selected to
fit the experimental variogram obtained from the sample
points. Common theoretical models are: linear model,
spherical model, gaussian model, etc [12,13]. In coal-
bearing rock formation modeling, the spherical model is
the most widely used. The spherical model formula can
be written as

γ(h) =


C0 h = 0
C0 +C

(
3h
2a −

h3

2a3

)
0 < h≤ a

C0 +C h > a
. . (4)

where C, C0, A are undetermined parameters. The selec-
tion of different parameters will determine the accuracy
of model fitting.

2.2. PSO-SVR Optimized Variogram
Support Vector Machine (SVM) was originally to solve

the two-classification problem. Related scholars extended
SVM and established SVR to solve the regression prob-
lem of function estimation [14,15]. SVR uses the deci-
sion boundary of the optimal hyperplane in support vector
classification to build a regression model. xi is the sample
input, yi is the sample output, φ (xi) represents the feature
vector after xi is mapped to the high-dimensional feature
space, and the corresponding optimal hyperplane formula
is obtained as

f (xi) = ω
T

φ (xi)+b . . . . . . . . . . (5)

where ω is the normal vector and b is the displacement
term. The essence of the SVR model training process is
to find the optimal ω and b so that f (xi) is close to yi, and
the convex optimization function is obtained as

min
ω,b

1
2
‖ω‖2 + c

m

∑
i=1

(ξ ∗i +ξi) . . . . . . . . (6)

where c is the penalty factor, ξ ∗i and ξi are relaxation fac-
tors. The constraint conditions corresponding to the con-
vex optimization function are obtained as

s.t


f (xi)− yi ≤ ε +ξi
yi− f (xi)≤ ε +ξ

ξi,ξi ≥ 0, i = 1,2 . . . ,m
c > 0

. . . . . . (7)

where the relaxation factor ε represents the deviation of
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Fig. 1. PSO-SVR optimized Kriging algorithm: an overall structure.

f (xi) and yi. Then the Lagrange multipliers ai and a∗i
are introduced to solve this constrained convex optimiza-
tion function, and the parameters ω and regression model
function f (x) in the SVR model can be obtained as

ω =
m

∑
i=1

(a∗i −ai)φ (xi) . . . . . . . . . . (8){
f (x) = ∑

m
i=1 (a

∗
i −ai)K (x,xi)+b

K (x,xi) = exp
(
−g‖x− xi‖2

) . . . (9)

where g represents the kernel parameter of the kernel
function K (x,xi). The resulting kernel function K (x,xi)
improves the model’s ability to deal with nonlinear re-
gression problems. Radial Basis Function (RBF) can ef-
fectively improve the fitting effect and prediction perfor-
mance of the model, so it is often used as a kernel function
to optimize the SVR model.

In the SVR model, the penalty factor c controls the er-
ror range to avoid over-fitting or under-fitting. In the RBF,
the kernel parameters g control the distribution of data af-
ter mapping to the new feature space, determine the num-
ber of support vectors, and affect the speed of training and
prediction. Therefore, choosing the right method to obtain
the optimal parameters is a problem we need to solve.

The particle swarm optimization algorithm is another
population based optimization algorithm. The algorithm
was first proposed by Kennedy and Eberhart in 1995 [16].
Its basic concept originated from the study of artificial life
bird predation behavior. It uses information sharing and
collaboration between individuals to search for the best
location. The solution space of the problem is mapped
to the corresponding particle space, and each particle has
position and velocity information. For specific problems,
adjust in the feasible solution space according to indi-
vidual fitness and group fitness to search for the optimal
value.

According to statistical ideas, the best fit to the theoret-
ical model is essentially to minimize the variance between
the theoretical variogram value and the actual variogram

value [17]. So the fitness function is expressed as

fi =
1

∑
N(h)
i=1 (r∗ (hi)− r (hi))

2
. . . . . . . (10)

In this paper, the penalty factor c and the kernel param-
eter g are used as the particles in the PSO. The procedure
of the PSO optimizes SVR parameter in Fig. 2. Accord-
ing to the fitness function described above, the parameters
are optimized following the PSO algorithm to determine
the optimal parameter value.

3. Experiment of Fitting Variogram

This paper uses the drilling data in the actual project
to conduct experiments to verify the feasibility of the
method. The experimental software used in the reported
experiment is MATLAB R2019.

3.1. Data Setting
The data set in this paper comes from a coal working

face in Xinjiang. It contains 14 drilling points, record-
ing the x-coordinate, y-coordinate and the thickness of
the coal seam. The relative position of its plane and spa-
tial distribution is shown in Fig. 3, 4. It can be seen from
the drilling data that the thickness of the coal seam in the
study area is between 3-9 meters.

3.2. Simulation Experiments
In this part, we analyzed and compared the fitting de-

gree of the theoretical spherical model, PSO-Spherical
model, SVR model and PSO-SVR model to the experi-
mental sample variogram.

According to Section 2, calculating the experimental
variogram of the sample is the first task of this method.
First, calculate the distance matrix of each point according
to the drilling data, select the step length lag = 100, and
obtain the maximum step length distance through calcu-
lation. Then find the matching point pair through the loop
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Fig. 2. Procedure of the PSO optimization of SVR parameter.

Fig. 3. Relative position distribution of drilling plane.

code. Finally, the experimental variogram of the sample
is calculated, as shown in Fig. 5.

The spherical model curve is shown in Fig. 6. In the
spherical model of the variogram theory, range a quantita-
tively represents the spatial variation range of the region-
alization variable, nugget value C0 represents the random-
ness of the regionalization variable, and sill value C+C0
represents the magnitude of the spatial variation of the re-
gionalization variable.

In traditional geological modeling software, the param-
eters of the spherical model are fitted by the Least Square
(LS) method. This method has low computational com-
plexity, but could easily fall into a local optimal solution.

Fig. 4. Relative position distribution of drilling space.

Fig. 5. Sample experimental variogram.

Therefore, on this basis, using a, C0 and C as particles,
PSO is used to optimize the parameters to improve the fit
of the spherical model.

Although the fitting degree of the spherical model opti-
mized by PSO has been improved, when the experimental
data is small and the variogram has a peak, its fitting ef-
fect needs to be improved, so it is very important to find a
model that can be automatically fitted.

Aiming at the experimental variogram curve, this paper
uses the SVR model for preliminary fitting.

In order to further improve the fitting degree of SVR,
PSO is used to optimize the penalty factor c and the kernel
parameter g. This paper sets the learning factor C1 = 1.3,
C2 = 1.7, the number of particles size = 50, and the max-
imum number of iterations max = 500 in the PSO.

3.3. Result Analysis and Discussion
The experimental variogram of the sample through

the traditional kriging spherical model, PSO-Spherical
model, SVR model and PSO-SVR model is shown in
Fig. 7.

It can be seen from Fig.7 that the value range of the
sample experiment variogram is from 0.0105 to 0.2066,
and there are three peaks of 0.1479, 0.1518 and 0.2066.
The empirical variogram obtained by the theoretical
spherical model ranges from 0.0339 to 0.1424, and the
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Fig. 6. Spherical model.

Fig. 7. Fitting plot of experimental variogram.

fitting values for the three peaks are 0.1082, 0.1408 and
0.1419 respectively. Therefore, it can be seen that the
model has a poor fitting effect for the numerical muta-
tion of the experimental variogram. The empirical vari-
ogram obtained by using the PSO-Spherical model ranges
from 0.0293 to 0.1219, and the fitted values for the three
peaks are 0.0934, 0.1206, and 0.1219 respectively. This
model has the lowest degree of fit for the numerical mu-
tation of the experimental variogram, but its overall curve
fit is higher than that of the theoretical spherical model.
The empirical variogram obtained by SVR model ranges
from 0.0190 to 0.1377, and the fitting values for the three
peaks are 0.1175, 0.1335 and 0.1336 respectively. Com-
pared with the previous two models, the model has a
significantly improved fit for the numerical mutation of
the experimental variogram, and there is a more obvi-
ous peak trend change. The PSO-SVR model proposed
in this paper obtains the empirical variogram in the range
of 0.0190-0.1642, and the fitting values of the three peaks
are 0.1163, 0.1499 and 0.1630, respectively.

Due to the small number of drilling in the coal work-
ing face in the study area, it is not suitable for cross-
validation. Therefore, this article chooses Mean Squared

Error (MSE) as the measurement standard. The MSE
computed as

MSE =
1
n

n

∑
i=1

(yi− ŷi)
2 . . . . . . . . . . (11)

where n is the number of samples, yi is the actual data, ŷi
is the fitted data. MSE data can be evaluated the degree
of change, the smaller the numerical value is, the experi-
mental data fitting model described better accuracy. The
MSE of each model is shown in Table 1.

Table 1. MSE of Each Model.

Mean Squared Error
Spherical model 0.0775
PSO-Spherical model 0.0683
SVR model 0.0519
PSO-SVR model 0.0362

It can be seen from the table that MSE(Spherical)
>MSE(PSO−Spherical) >MSE(SV R) >MSE(PSO−SV R).

The results show that the PSO-SVR automatic fitting
model is higher than other models in terms of peak fit-
ting and overall curve fitting. This is because the PSO
algorithm has a unique memory function and can dynam-
ically track the global optimization. Using this advantage
of the PSO algorithm, it is reasonable to select the SVR
parameters to form the PSO-SVR model, which can make
the prediction results more scientific and rigorous. The
initial state of the particles in the model can be adjusted
autonomously to improve the search accuracy, and finally
a fitting model with smaller errors can be obtained.

In practical engineering applications, coal seam thick-
ness prediction and modeling is the focus of geological
modeling of coal-bearing rock formations. In the ordinary
kriging interpolation process, the PSO-SVR automatic fit-
ting model proposed in this paper is used to form a three-
dimensional visualization model of coal seam thickness
by writing code, as shown in the Fig. 8. In this figure,
the coordinate axis Z represents the thickness of the coal
seam, and the color change from blue to yellow represents
the change in the thickness of the coal seam from thin to
thick.

Fig. 8. Coal seam thickness preseated in the study area.
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4. Conclusion

The accuracy of Kriging interpolation largely depends
on the selection of the variogram. In practical engineer-
ing applications, when targeting a certain coal working
face, there are characteristics of less drilling data and in-
sufficient available data. Therefore, the commonly used
theoretical variogram model has a low degree of fit. In re-
sponse to this situation, this paper proposes a PSO-SVR
model to automatically fit the variogram. By compar-
ing the theoretical spherical model, PSO-Spherical model,
and SVR model, it is concluded that this method has the
best fit. The method in this paper provides a feasible
scheme for the prediction of coal seam thickness in practi-
cal engineering applications.In the follow-up work, try to
apply the ant colony algorithm and neural network com-
monly used in emotion recognition and target detection to
the study of coal seam thickness prediction of small data
sets.
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