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A method for noise reduction is proposed on the ba-
sis of a fuzzy inference method called&r-GEMII. It is
nameda-GEMII-X denoising in this paper. a-GEMII-

X denoising reduces noise in learning data by iter-
atively performing a-GEMIl. a-GEMII-X denoising
makes it possible to unify fuzzy inference and prepro-
cessing to optimize fuzzy rules with noise-corrupted
data. A method is also proposed for the determination
of the timing when to terminate the iterative process
by effectively using the properties ofa-GEMII. Nu-
merical results indicate that noise is properly reduced
at the termination timing determined by the proposed
method. They prove thata-GEMII-X denoising is fea-
sible in practice.

Keywords: fuzzy inference, noise reduction, fuzzy rule

optimization,a-cut, generalized mean

1. Introduction

ized by directly using learning data. Facts are given by
fuzzy sets directly generated from the learning data. The
fuzzy rules are deterministically updated with deduced
consequences in each iteration and noise is gradually re-
duced along with the iterations. A method is also pro-
posed for the determination of the timing when to termi-
nate the iterative process inGEMII-X denoising. They
are derived by utilizing the changes of estimated devia-
tions by noise in each iteration. The estimated deviations
are stored in the form of the supports of consequent fuzzy
sets defined in the fuzzy rules. Numerical results show the
feasibility of a-GEMII-X denoising.

2. Definitions and Preliminaries

For the following discussions, some definitions and
preliminaries are presented. Further details of each are
described in [1-3].

Fuzzy inference has been applied to a wide variety ofP€finition 1 When a convex fuzzy sétin the universe of
fields. It often uses a number of fuzzy rules in parallel to diSCOUrs&X is defined by a continuous membership func-
represent nonlinear systems. In applications, fuzzy ruledion Ha(x) (x € X) and itsa-cuts (also calledr-level sets)
are often optimized with learning data obtained by ob-aré all boundedhe reference point x of Ais defined by

servation. In many cases, learning data are corrupted biSing itsa-CutAq as follows:

noise. The deviation by noise is an obstacle to optimizing o X5 + x4 a = maxpa(x) (1)
fuzzy rules. Fuzzy rules are required to be prevented from AT 2 = Maxta), - -
overfitting to noise in fuzzy rule optimization. Although a wherex andx’, denote the least upper and the greatest
larger number of fuzzy rules can represent more compleXower bounds of\,, respectively. ]

nonlinear systems, an excessively large number of fuzzy
rules often cause overfitting to noise. There is difficulty . .
in making a balance between the representation ability oP€finition 2 Suppose that a convex fuzzy #ein the uni-
complex nonlinear systems and the avoidance of overfitYe'Se of discours¥ is defined by a continuous member-
ting in optimizing the number of fuzzy rules. Therefore, SNIP functionua(x) (xe X) and itsa-cuts are all bounded.
noise reduction is significant in fuzzy rule optimization. 1 n€ fuzzy sef\is symmetric if and only if the following

In this paper, a method is proposed for noise reductiorfduation holds:
based ona-GEMIl (a-level-set and generalized-mean- Xe +Xg
based inference with the proof of two-sided symmetry of 2
consequences) [1-4]. The proposed method is named Here, x4 andx{, denote the least upper and the greatest
GEMII-X denoising (a-GEMII-based denoising to unify lower bounds of thex-cut A, of A, respectively. The
fuzzy inference and preprocessing for fuzzy rule opti- symbolx; represents the reference pointAf A convex
mization). a-GEMII-X denoising effectively applies the fuzzy set is callecdsymmetric if and only if Eq. (2) does
mean-based operations m-GEMIl to noise reduction. not hold. [ |
It iteratively performsa-GEMIl and reduces noise along
with the iterations. Fuzzy rules far-GEMIl are initial-

=X, VA €(0,amax, Omax= mXaXIJA(X). (2)

Definition 3 The generalized meavi({xj, pj}; w) is de-
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fined by . fuzzy set is defined by a triangular membership function.
n wl® Because a triangular membership function can be param-
Z PiXj eterized by its core and suppoa;GEMIl deduces only
M({xj,pj}; w) = J:i , Xj >0, pj>0, (3) the core and support of the consequence by the effective
Z D use of itsa-cut based scheme [1, 2]:
& J Deduction of cores: The coreyg. of Q is deduced by

. . . sc =M Pi}; (1)), H=1 ... @4
wherex; denotes a real number in the universe of dis- Yge ({?/QJC’ p!} (1)), (1) ) i “)
course ang; represents a real number used for the weightThe core ofQ; is a singleton becausg is defined by a
of xj. The symboky denotes a real number to determine riangular membership function. In Eq. (4)c denotes

the property of the mean [1, 2]. [ the core ofQ;. Moreover, pj represents the compatibility
. _ degree betweeR andPj. The symbolw(1) means the
3. a-GEMIl and its Properties value of w in the generalized mean for deducing cores.

The proposed method for noise reduction is based orThe value ofw(1) is set to 1 so that the deduced core is
a-GEMII [1-3]. This section introduceg-GEMIl spe-  a singleton to make the membership function§dfian-
cialized for triangular membership functions. gular.

Deduction of supports: The least upper bou and the
3.1. Parallel Fuzzy Inference PP PP ry"é

This paper treats the parallel fuzzy inference in thegreatest Iowerboun;é of the supporQ of Q are deduced

form below: by
Rule 1: Ifxis P; theny is Q. Yg = MUYQ, + (1= ¥ge), Bi}i (0)) — (1-Yge), (5)
Rule 2: Ifxis P, theny is Qo. . = 5
. . Yo = M({Yf_gj —Yge, Bits @(0)) +Yge, - - . (6)
Rul-en: If xis Py thény is Op. whereyk’_?j andyéj represent the least upper and the great-
Given fact: xis P. est lower bounds of the suppd@:j of Qj, respectively.

The symboko(0) means the value ab in the generalized
mean for deducing supports. The functidit{x;, pj}; @)
Here, P, and P denote fuzzy sets in the universe of dis- is defined by

Consequencey is O.

courseX, whereagQ; and Q represent fuzzy sets in the M({xj,pj}; @) =1—-M({1—xj, pjh;@). . . (7)
universe of discourseé. In particular,P; in the antecedent  The operation withVl is calledthe dual operation of M
part of the fuzzy rule is calledn antecedent fuzzy set,  in this paper. The value ab(0) determines the support

whereasQ; in the consequent part of the fuzzy rule is of Q. In the general form ofi-GEMII, the value ofw(0)
calleda consequent fuzzy set. WhenQj is defined by a  is automatically controlled on the basis of the relation be-
singleton, it is especially called consequent singleton.  tweenP andP; (j = 1,2,...,n) in fuzzy constraints. More

In this paperp;, Q;j, andP are all defined by normal and  details on the automatic control can be found in [2]. The
convex fuzzy sets and their reference points are placed igcheme otr-GEMII for triangular membership functions
[0,1]. The membership functions &, Q;, P, andQare s detailed in [1-4].

respectively denoted by, (X), Ho, (Y), Up(X), andu?(y),

wherex € X andy € Y. For convenience in the following T , .
discussions, th¢-th fuzzy rule is represented I;. 4. a-GEMII-X Denoising: Noise Reduction

with a-GEMI
. . A method for noise reduction is proposed on the basis
3.2. a-GEMIl Specialized for Triangular of a-GEMII. It iteratively performsa-GEMII to reduce
Membership Functions noise. In this paper, the proposed method is named

Triangular membership functions are computationally GEMII-X denoising (a-GEMIl-based denoising to unify
effective in inference operations because the number ofuzzy inference and preprocessing for fuzzy rule opti-
their parameters is small. Triangular membership func-mization). A method is also proposed for the determina-
tions can be parameterized with the least upper and théon of the timing when to terminate the iterative process.
greatest lower bounds af-cuts. As the operations in
a-GEMIl are a-cut-based, they can easily be specialized4.1. Operational Steps ofr-GEMII-X Denoising
for triangular membership functions as shown below. The In a-GEMII-X denoising,a-GEMIl is iteratively per-
operational steps in the general formmiGEMIl are de-  formed and noise in learning data is suppressed in each
scribed in [1, 2]. B generation of the iterative process. In the following, the

Under the condition thaPj, Qj, and P are normal input-output pairs of the learning data are denoted by
and are defined by triangular membership functians, (X, V) (k=1,2,...,nq), wherexg andyj are the inputand
GEMII can deduce consequences in the form of normaloutput numerical values of the learning data, respectively
fuzzy sets defined by triangular membership functions. InSuppose that the relatiomg < %1 (k=1,2,...,nq — 1)
the following discussion, note that the core of a fuzzy sethold and the learning data are sampled at equal inter-
is a singleton and is equal to its reference point when thevals. Although the membership-function shapes of the an-
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tecedent and consequent fuzzy sets determine the perfor-

mance of

gular membership functions are adopted for their defini-
tions in this paper. Triangular membership functions pro-

vide high

GEMII. As the antecedent and consequent fuzzy sets are
defined by triangular membership functions, their cores

noise reduction m-GEMII-X denoising, trian-

computational efficiency in the operationsef

are singletons. The operational stepsaeGEMII-X de-
noising are shown in the following:

Step 1: Initialize fuzzy rules foa-GEMIl as stated be-

low:

(i

(i) Define the consequent fuzzy se€3 (k

Define the antecedent fuzzy se®& (k =
1,2,...,nq) of the fuzzy rules R¢ (k =
1,2,...,nq) by triangular membership func-
tions. Their coresx%( (k=1,2,...,nq) are
given byX (k=1,2,...,nq), respectively. The
supports o (k=1,2,...,nq) are set so as to
form the strong fuzzy partitioning by satisfying

N4

z HR (X) =1 . (8)
K=1

where up (x) denotes the membership func-
tion of B.. Thus,P is symmetric and its sup-
port width is 4%, whereAX = X1 — X (k=
1,2,....,ng—1).

1,2,...,nq) of the fuzzy rules R¢ (k
1,2,...,nq) by triangular membership func-
tions. Their coreg/f?k (k=1,2,...,nq) are
given byyi (k=1,2,...,ng), respectively. The
initial values of the least upper bowyék and
the greatest lower boundQk of the supporQ,

of Q are set toy. Hence Qy is initially given
by a singleton.

Step 2: Generate fack (k= 1,2,...,nq) given fora-
GEMII in the following way: R (k=1,2,...,nq) _ ot n
are represented by Symmetrlc fuzzy sets. The referneWIy def|ned Crlterlaa-GEM“-X deI’IOISIng can be fur'

ence
1,2,.

points of (k=1,2,...,nq) are set to (k=
..,Nhg), respectively. Each of their support-

Noise Reduction by Fuzzy Inference

of w(0) is automatically set to 1 in the processmf
GEMII as stated in Section 3.2 [2].

Step 4: Replace the current values ’ (k
1,2,...,nq) with the values o;%k (k=1,2,...,nq),
respectively. The symbtyfjk denotes the core .

Step 5: Update the current valuesyg;k andyék (k=
1,2,...,ng) by using B -
ykj_?k :y%k+ ‘y%k_yk"

yék :y%ki ‘y%kiyk"

9)
(10)

Step 6: Finish the process if the termination conditions
are satisfied; otherwise return to Step 3. The termi-
nation method is proposed in Section 4.3.

The deduced cor (k=1,2,...,nq) present noise-

reduced learning datar-GEMII-X denoising effectively
uses the mean operationsdarGEMII to reduce noise in
each generation of the above-mentioned iterative process.
The supports ofx (k=1,2,...,nq) indicate the possible
ranges of the deviations caused by noise. In Section 4.3,
criteria are proposed for the determination of the timing
when to terminate the iterative process.

In Step 3P, andP,, are not given as facts after the first
generation to prevent the deduced cores from moving to
undesired directions in the iterative process. This is be-
cause each df andP,, activates two fuzzy rules at the
least upper and the greatest lower boundX.oAdjacent
three fuzzy rules are required to be activated to properly
reduce noise in the iterative process as described in Sec-
tion 4.2.

a-GEMII automatically sets the value 0§(0) to 1 in
Step 3. Some variations are conceivable to reduce noise
with a-GEMII: For example, the values of(1) andw(0)
are changed to other than 1, controlling by using some

ther developed in the framework proposed in this paper.
In Step 3,a-GEMIl deduces the singleton cores by

widths is less than or equal t&\2 The membership ~Setting the value otv(1) to 1. These cores represent
function of B is triangular or trapezoidal. It can also the noise-reduced learning data aRGEMII-X denois-
represent a closed interval because the membershiffd- Whenw(1) = 1, a-GEMIl deduces the singleton

Step 3: In the first generation, gi& (k=1,2,...,ng)

function of a closed interval can be seen as a spefores in the equivalent manner of Takagi-Sugeno fuzzy
cial case of trapezoidal membership functions. Noteinference in t_he case where the consequent parts of fuz_zy
that the membership-function shapeéhtietermines rules are defined by constant values. In this sense, noise
the performance of noise reduction. Section 4.2 pro-¢an be reduced also by using Takagi—Sugeno fuzzy in-

poses a method for defining the membership functionférence only in the above-mentioned case and by apply-
of B.. ing the noise-reduction principle proposed in Section 4.2.

Takagi—Sugeno fuzzy inference, however, cannot deduce
fuzzy sets, as opposed t6 GEMII. Therefore, it cannot
store the estimated deviations in the form of the supports
of consequent fuzzy sets in the same manner as shown
R (k=2,...,ng — 1) as facts and perform-GEMII in Step 5. The transitional changes of the support widths
in accordance witR, (k=1,2,...,nq). LetQx (k= are effectively utilized to determine the timing when to
1,2,...,nq) denote the consequences deduced withterminate the iterative process inGEMII-X denoising.

A (k=1,2,...,nq), respectively. Note that the value Further details on the timing are described in Section 4.3.

as facts and perform@-GEMIl in accordance with
R« (k=1,2,...,ng). In other generations, give
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Data Corrupted by Noise [3]. a-GEMI-ES utilizesa-GEMINAS (a-level-set and
// generalized-mean-based inference with fuzzy rule inter-
. Vi Data Displaced polation at an infinite number of activating points) pro-
after a Single Iteration . .
2 posed for inference with sparse fuzzy rules [5]. In com-
3 parison witha-GEMI-ES, a-GEMII-X denoising is com-
a putationally cost-effective. Moreoven-GEMII-X de-
s R S (A noising is more flexible than-GEMI-ES because it can
e ) e control the noise-reduction performance and convergence
uDE Vi1 \ _ speed by tuning the values pf, ", andpy, ,.
Maximum The process of the noise reduction imGEMII-X

E Displacement Position denoising is mathematically equivalent to the weighted

;(k Xk Xk moving average in the restricted way of weighting,
A o g‘ihmebiﬁgfe';gﬂﬁ'%”ﬂ <t Whereinthe weight restrictions are based on Egs. (11) and
' ' / Y (12). Thus, it can be seen thatGEMII-X denoising it-

1k ' ; : : :
9 Fact eratively performs the equivalent to the weighted moving
= average in the scheme of fuzzy inference wattGEMII.
0 _ Universe of DiscoursX Thereby,a-GEMII-X denoising can unify the fuzzy in-
A ference engine and the preprocessor for fuzzy rule opti-
Fig. 1. Principle of noise reduction wita-GEMII-X de- mization. It provides an effective way to implement fuzzy
noising in the case whesg > Vi. inference and noise reduction for fuzzy rule optimization

on a single hardware platform.

4.2. Principle of Noise Reduction witha-GEMII 4.3. A Method for Terminating Iterative Process in

In the following, letyi_1, Yk, andyi.1 denote the cur- "_‘GE'V',"'X De”O'S'”9 .
rent cores of)_1, Qk, andQy, 1 in a generation, respec- N this Section, a method is proposed for the determina-
tively. In a-GEMI-X denoising, the compatibility de- tion of the timing when to terminate the iterative process
grees forA_1, R, and A1 are required to satisfy the N a-GEMII-X denoising. It takes the effective use of the

conditions given by the following equations: support widths of consequent fuzzy sets changed along
. with generations.
Pk = 1.0, (11) Let the changeAWo, (t) of the support widthig, (t)
Pr1= Prs1- (12)  of Q«(t) be defined byAWq, (t) = Wa, (t) —Wo, (t — 1),

whereQ(t) denotes the consequent fuzzy set in a gener-
Under the conditions, the deduced cgfe of Qsatisfies  ationt. The number of the fuzzy rules is counted in each
the relations below when the learning data are sampled ajeneration, depending @Wg, (t) as follows:
equal intervals:

Ninc(t) : AW, (t) > 0, (14)
Yk =Yg, = Vo Yk > Yk, 13) Nnon(t) : AW, (t) =0, (15)
Yk < yc <Vk, Otherwise Ngedt) : AW, (t) < 0. (16)

If noise is ideally reduced along with the generations and
the learning data are closer to their true values, the value
of AWg, (t) becomes smaller toward zero and hence the
value ofninc(t) decreases. If the iterative processain
GEMII-X denoising is excessively performed, the learn-
ing data sequence is closer to a linear sequence even when
the true sequence of the learning data is not originally lin-
ear. As aresult, the value of,c(t) turns to increase when
the iterative process is excessively conducted. By the ef-
fectlve use of this property afi,c(t), this paper proposes

a method for the determination of the timing when to ter-
minate the iterative process inGEMIl denoising.

As noise is not always reduced toward the true se-
guence in the iterative procesgedt) is also considered
together withninc(t). This paper proposes the use of the
predominance ofinc(t) overngedt) as a criterion for de-
riving the timing when to terminate the iterative processin
a-GEMII-X denoising. In order to numerically evaluate
"the predominance, the following index is proposed:

whereyk = (Yk_1+Yk+1)/2. The principle of noise reduc-
tion in a-GEMII-X denoising is based on Relation (13).

Figure 1 exemplifies the process of the noise reduc-
tion with a-GEMII-X denoising in the case where the
relation yx > Yk holds. Eq. (13) proves that the point
(X, Ya,) is always displaced fror®, yk) toward (X, i)
in X x Y and can never exceed the poiRt, Yk) in each it-
eration. Sincégy is placed on the straight line between the
points (Xk_1,Yk—1) and (X+1,Yk+1) in X x Y, the noise-
corrupted data are made locally closer to a linear sequence
in [R_1,%1] in each iteration. Accordingly, the devia-
tions due to noise in the learning data are globally sup-
pressed.a-GEMII-X denoising reduces noise in such a
deterministic way. The conditions with Egs. (11) and (12)
play an important role in the iterative process for noise
reduction ina-GEMII-X denoising.

The above mentioned principle is derived by ap-
plying the essential mechanism of a noise reduction
method calleda-GEMI-ES (a-GEMINAS-based local-
evolution toward slight linearity for global smoothness) lincp(t) = [Ninc(t) = Ngedt)] /Ng. . . . . . . (17)
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This index is namethe predominance index lincp in this
paper. Using the predominance index as a criterion, this
paper proposes a method for determining the termination
timing of the iterative process ion-GEMII-X denoising

as follows: The iterative process is terminated in around
a generation where the valuelgfp(t) changes from de-
crease to increase.

The local linearity index I, is also proposed to evalu-
ate the smoothness of the noise-reduced data, considering /
the iterative process io-GEMII-X denoising. The local Y TP PP TP
linearity indexl, is defined for a sequence of singleton 0 8'2. 04 06 08 10
. 0 = R niverse of DiscoursX
input—output pair$sy, yk) (k=1,2,...,n) by using the fol- . .

- . 4 Fig. 2. Functiong(x)
lowing equation [3, 6]:

Universe of Discours¥

l,=1-D, . . . . . .. ... ....(18)
where 5.1. Simulation Conditions
The simulations are performed under the following
1t conditions:
D=z 2% (19) i) Learning dat ted by the followi
n-2%, (i) t_earr.nng ata are generated by the following equa-
= e =5 (20) 'Onf'_ ) +re, k=1,2 n 23
szsk()zk); (21) yk—CI( k)+ K> ] 7'3"7 d, (2)
Yir1 — Yi-1 . x—0.05 x—0.05
=22 T (x— . =0.12(32 —48
() >‘<k+1—>“<k_1<x K1) +Yi-1 (22) q(x) ( 0.9 0.9
) ) ) x—0.05
Note thats«(x) is a linear function through the two +20.16 09 +0.25, (24)
points (X-1,Yk-1) and (X1, Yk+1). Here, letz(x) de- ’
note the piecewise linear function obtained by linearly wherer, denotes the additional noise. The value
connecting the three point41,Yk-1), (%Yk), and of r¢ is given by a uniform random number in
(%1, ¥k+1) (K=2,3,...,n—1). As can be found from [~0.05,0.05. The numbeny of the learning data is
the definition,I, indicates the degree to which(x) is 201 andq; = (k—1)/200(k=1,2,...,201). Then,
close to the linear functios,(x) locally in [%-1,%:a]- the value ofAX is 0.005. Fig. 2 depicts the function
As the degree is highel is closer to 1. Thereby, the a(x).

smoothness of a sequence is evaluated by the degree to .

which the sequence is locally closer to a linear sequence.(ii) The support width of each given faé is set to

The local linearity index,, in a generatiort is denoted 0.25. This setting providepc™; = 0.2, px = 1.0,

by I, (t). andpi1 = 0.2. Therefore, Eqgs. (11) and (12) hold.
As criteria to terminate the iterative process dn

GEMII-X denmsmg, botHincp(t) an.dILo(t) are effectively 5.2 Numerical Results

applied. Along with the generations, the valuelgfit) Fi 3 devicts the t iional ch . d

is closer to 1 as the smoothness of the noise-reduced se- ' '94'¢ epicts the transitional changes In reduc-

quence becomes higher, whilg,(t) decreases and turns Mg noise in the learning data witlr-GEMI-X de-

to increase as the noise-reduced sequence becomes clo8§/5N9- The supports of the consequent fuzzy sets

to a linear sequence back away from the true sequenc re not shown ‘in the figure for ease of visibiliy.

: ig. 3(a) shows the learning data which define the
of the learning data as long as the true sequence of the = B
learning data is not linear. Therefore, the iterative pssce initial conseguent core%k (k._ 5 2""’291) of the
in a-GEMII denoising is to be terminated at the timing fUZZy rules in accordance with Step 1Figs. 3(b)-
when the value of,(t) is large enough in around a gen- (f) present the cores of the consequences deduced by

eration where the value df,cp(t) changes from decrease 2-CEMI after the first generation, followed by the 10th,
to increase. 20th, 40th, and 200th generation of the iterative process in

a-GEMII-X denoising. As can be found in these figures,
the noise is reduced along with the generations.
5. Simulations: Transitional Changes in Noise Figures 4and5 show the transitional changes gfcp
Reduction with a-GEMII-X denoisin gndILO,' respectively. Considering poth of them as statgd
€ g in Section 4.3, the deduced cores in the 200th generation
Simulations are performed in order to illustrate the ba-gre adopted as final output of the processtd6EMII-X
sic properties otr-GEMII-X denoising. Their results in-  denoising. As can be found froFig. 3(f), the smoothness

dicate that it is feasible to apply-GEMII-X denoisingto  and the closeness to the true sequence are well-balanced
fuzzy rule optimization with learning data corrupted by in the 200th generation.

noise.
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Fig. 3. Transitional changes in noise reductiondyGEMII-X denoising.

From the discussions above;GEMII-X denoising is
found to be feasible. Further studies are to be conducted
by using noise-corrupted data observed in the actual pro-
cess in order to prove the practical effectivenessrof
GEMII-X denoising.

6. Conclusion

A noise-reduction method has been proposed on the ba-
sis of a fuzzy inference method calledGEMII. The pro-
posed method has been naneeGEMII-X denoising. a-
GEMII-X denoising iteratively performs-GEMII to re-
duce noise in learning data sequences. A method has also
been proposed for the determination of the timing when
to terminate the iterative process. It can make a balance
between the smoothness of the noise-reduced sequences
and the closeness to the true sequences.

a-GEMII-X denoising can unify fuzzy inference based
on a-GEMIl and preprocessing to optimize fuzzy rules
with noise-corrupted data. It provides a way to imple-
ment fuzzy inference and noise reduction for fuzzy rule
optimization on a single hardware platform.

Numerical results have shown tr@atGEMII-X denois-
ing properly reduces noise along with the iterations. The
proposed method for terminating the iterative process in
a-GEMII-X denoising has been found to be effective: The
smoothness and the closeness to the true sequence are
well-balanced. Thereby, the numerical results indicage th
feasibility of a-GEMII-X denoising in practical use.
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Fig. 5. Transitional changes in local linearity index.
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a-GEMII-X denoising may be further developed by the

effective use of the properties af-GEMII: the gener-

alized mean operations and the proof of convex conse-
quences. The development is expected to provide more
effective methods for unifying fuzzy inference and fuzzy

rule optimization in a single hardware platform.
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