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A method for noise reduction is proposed on the ba-
sis of a fuzzy inference method calledααα-GEMII. It is
namedααα-GEMII-X denoising in this paper. ααα-GEMII-
X denoising reduces noise in learning data by iter-
atively performing ααα-GEMII. ααα-GEMII-X denoising
makes it possible to unify fuzzy inference and prepro-
cessing to optimize fuzzy rules with noise-corrupted
data. A method is also proposed for the determination
of the timing when to terminate the iterative process
by effectively using the properties ofααα-GEMII. Nu-
merical results indicate that noise is properly reduced
at the termination timing determined by the proposed
method. They prove thatααα-GEMII-X denoising is fea-
sible in practice.

Keywords: fuzzy inference, noise reduction, fuzzy rule
optimization,α-cut, generalized mean

1. Introduction
Fuzzy inference has been applied to a wide variety of

fields. It often uses a number of fuzzy rules in parallel to
represent nonlinear systems. In applications, fuzzy rules
are often optimized with learning data obtained by ob-
servation. In many cases, learning data are corrupted by
noise. The deviation by noise is an obstacle to optimizing
fuzzy rules. Fuzzy rules are required to be prevented from
overfitting to noise in fuzzy rule optimization. Although a
larger number of fuzzy rules can represent more complex
nonlinear systems, an excessively large number of fuzzy
rules often cause overfitting to noise. There is difficulty
in making a balance between the representation ability of
complex nonlinear systems and the avoidance of overfit-
ting in optimizing the number of fuzzy rules. Therefore,
noise reduction is significant in fuzzy rule optimization.

In this paper, a method is proposed for noise reduction
based onα-GEMII (α-level-set and generalized-mean-
based inference with the proof of two-sided symmetry of
consequences) [1–4]. The proposed method is namedα-
GEMII-X denoising (α-GEMII-based denoising to unify
fuzzy inference and preprocessing for fuzzy rule opti-
mization). α-GEMII-X denoising effectively applies the
mean-based operations inα-GEMII to noise reduction.
It iteratively performsα-GEMII and reduces noise along
with the iterations. Fuzzy rules forα-GEMII are initial-

ized by directly using learning data. Facts are given by
fuzzy sets directly generated from the learning data. The
fuzzy rules are deterministically updated with deduced
consequences in each iteration and noise is gradually re-
duced along with the iterations. A method is also pro-
posed for the determination of the timing when to termi-
nate the iterative process inα-GEMII-X denoising. They
are derived by utilizing the changes of estimated devia-
tions by noise in each iteration. The estimated deviations
are stored in the form of the supports of consequent fuzzy
sets defined in the fuzzy rules. Numerical results show the
feasibility of α-GEMII-X denoising.

2. Definitions and Preliminaries
For the following discussions, some definitions and

preliminaries are presented. Further details of each are
described in [1–3].

Definition 1 When a convex fuzzy setA in the universe of
discourseX is defined by a continuous membership func-
tion µA(x) (x ∈ X) and itsα-cuts (also calledα-level sets)
are all bounded,the reference point x◦A of A is defined by
using itsα-cutAα as follows:

x◦A =
xℓα + xu

α
2

, α = max
x

µA(x), . . . . . . (1)

wherexu
α andxℓα denote the least upper and the greatest

lower bounds ofAα , respectively.

Definition 2 Suppose that a convex fuzzy setA in the uni-
verse of discourseX is defined by a continuous member-
ship functionµA(x) (x∈X) and itsα-cuts are all bounded.
The fuzzy setA is symmetric if and only if the following
equation holds:
xℓα + xu

α
2

= x◦A, ∀α ∈ (0,αmax], αmax= max
x

µA(x). (2)

Here,xu
α andxℓα denote the least upper and the greatest

lower bounds of theα-cut Aα of A, respectively. The
symbolx◦A represents the reference point ofA. A convex
fuzzy set is calledasymmetric if and only if Eq. (2) does
not hold.

Definition 3 The generalized meanM({x j, p j};ω) is de-
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fined by

M({x j, p j};ω) =
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∑
j=1

p jx
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j

n

∑
j=1

p j











1
ω

, x j > 0, p j > 0, (3)

wherex j denotes a real number in the universe of dis-
course andp j represents a real number used for the weight
of x j. The symbolω denotes a real number to determine
the property of the mean [1,2].

3. ααα-GEMII and its Properties
The proposed method for noise reduction is based on

α-GEMII [1–3]. This section introducesα-GEMII spe-
cialized for triangular membership functions.

3.1. Parallel Fuzzy Inference
This paper treats the parallel fuzzy inference in the

form below:

Rule 1: If x is P1 theny is Q1.
Rule 2: If x is P2 theny is Q2.

...
...

Rulen: If x is Pn theny is Qn.
Given fact:x is P̃.

Consequence:y is Q̃.

Here,Pj and P̃ denote fuzzy sets in the universe of dis-
courseX , whereasQ j and Q̃ represent fuzzy sets in the
universe of discourseY . In particular,Pj in the antecedent
part of the fuzzy rule is calledan antecedent fuzzy set,
whereasQ j in the consequent part of the fuzzy rule is
calleda consequent fuzzy set. WhenQ j is defined by a
singleton, it is especially calleda consequent singleton.
In this paper,Pj, Q j, andP̃ are all defined by normal and
convex fuzzy sets and their reference points are placed in
[0,1]. The membership functions ofPj, Q j, P̃, andQ̃ are
respectively denoted byµPj (x), µQ j(y), µP̃(x), andµQ̃(y),
wherex ∈ X andy ∈ Y . For convenience in the following
discussions, thej-th fuzzy rule is represented byR j.

3.2. ααα-GEMII Specialized for Triangular
Membership Functions

Triangular membership functions are computationally
effective in inference operations because the number of
their parameters is small. Triangular membership func-
tions can be parameterized with the least upper and the
greatest lower bounds ofα-cuts. As the operations in
α-GEMII areα-cut-based, they can easily be specialized
for triangular membership functions as shown below. The
operational steps in the general form ofα-GEMII are de-
scribed in [1,2].

Under the condition thatPj, Q j, and P̃ are normal
and are defined by triangular membership functions,α-
GEMII can deduce consequences in the form of normal
fuzzy sets defined by triangular membership functions. In
the following discussion, note that the core of a fuzzy set
is a singleton and is equal to its reference point when the

fuzzy set is defined by a triangular membership function.
Because a triangular membership function can be param-
eterized by its core and support,α-GEMII deduces only
the core and support of the consequence by the effective
use of itsα-cut based scheme [1,2]:
Deduction of cores: The coreyQ̃c of Q̃ is deduced by

yQ̃c = M({yQc
j
, p̃ j};ω(1)), ω(1) = 1. . . . (4)

The core ofQ j is a singleton becauseQ j is defined by a
triangular membership function. In Eq. (4),yQc

j
denotes

the core ofQ j. Moreover, ˜p j represents the compatibility
degree betweeñP andPj. The symbolω(1) means the
value ofω in the generalized mean for deducing cores.
The value ofω(1) is set to 1 so that the deduced core is
a singleton to make the membership functions ofQ̃ trian-
gular.
Deduction of supports: The least upper boundyu

Q̃
and the

greatest lower boundyℓ
Q̃

of the supportQ̃ of Q̃ are deduced

by
yu

Q̃ = M({yu
Q j

+(1− yQ̃c), p̃ j}; ω(0))− (1− yQ̃c), (5)

yℓQ̃ = M({yℓQ j
− yQ̃c, p̃ j}; ω(0))+ yQ̃c, . . . (6)

whereyu
Q j

andyℓQ j
represent the least upper and the great-

est lower bounds of the supportQ
j

of Q j, respectively.
The symbolω(0) means the value ofω in the generalized
mean for deducing supports. The functionM({x j, p j};ω)
is defined by

M({x j, p j};ω) = 1−M({1− x j, p j};ω). . . (7)

The operation withM is calledthe dual operation of M
in this paper. The value ofω(0) determines the support
of Q̃. In the general form ofα-GEMII, the value ofω(0)
is automatically controlled on the basis of the relation be-
tweenP̃ andPj ( j = 1,2, . . . ,n) in fuzzy constraints. More
details on the automatic control can be found in [2]. The
scheme ofα-GEMII for triangular membership functions
is detailed in [1–4].

4. ααα-GEMII-X Denoising: Noise Reduction
with ααα-GEMII

A method for noise reduction is proposed on the basis
of α-GEMII. It iteratively performsα-GEMII to reduce
noise. In this paper, the proposed method is namedα-
GEMII-X denoising (α-GEMII-based denoising to unify
fuzzy inference and preprocessing for fuzzy rule opti-
mization). A method is also proposed for the determina-
tion of the timing when to terminate the iterative process.

4.1. Operational Steps ofααα-GEMII-X Denoising
In α-GEMII-X denoising,α-GEMII is iteratively per-

formed and noise in learning data is suppressed in each
generation of the iterative process. In the following, the
input-output pairs of the learning data are denoted by
(x̂k, ŷk) (k= 1,2, . . . ,nd), where ˆxk andŷk are the input and
output numerical values of the learning data, respectively.
Suppose that the relations ˆxk < x̂k+1 (k = 1,2, . . . ,nd −1)
hold and the learning data are sampled at equal inter-
vals. Although the membership-function shapes of the an-
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tecedent and consequent fuzzy sets determine the perfor-
mance of noise reduction inα-GEMII-X denoising, trian-
gular membership functions are adopted for their defini-
tions in this paper. Triangular membership functions pro-
vide high computational efficiency in the operations ofα-
GEMII. As the antecedent and consequent fuzzy sets are
defined by triangular membership functions, their cores
are singletons. The operational steps ofα-GEMII-X de-
noising are shown in the following:

Step 1: Initialize fuzzy rules forα-GEMII as stated be-
low:

(i) Define the antecedent fuzzy setsPk (k =
1,2, . . . ,nd) of the fuzzy rules Rk (k =
1,2, . . . ,nd) by triangular membership func-
tions. Their coresxc

Pk
(k = 1,2, . . . ,nd) are

given byx̂k (k = 1,2, . . . ,nd), respectively. The
supports ofPk (k = 1,2, . . . ,nd) are set so as to
form the strong fuzzy partitioning by satisfying

nd

∑
k=1

µPk(x) = 1, . . . . . . . . . (8)

where µPk(x) denotes the membership func-
tion of Pk. Thus,Pk is symmetric and its sup-
port width is 2∆x̂, where∆x̂ = x̂k+1− x̂k (k =
1,2, . . . ,nd −1).

(ii) Define the consequent fuzzy setsQk (k =
1,2, . . . ,nd) of the fuzzy rules Rk (k =
1,2, . . . ,nd) by triangular membership func-
tions. Their coresyc

Qk
(k = 1,2, . . . ,nd) are

given byŷk (k = 1,2, . . . ,nd), respectively. The
initial values of the least upper boundyu

Qk
and

the greatest lower boundyℓQk
of the supportQ

k
of Qk are set to ˆyk. Hence,Qk is initially given
by a singleton.

Step 2: Generate facts̃Pk (k = 1,2, . . . ,nd) given forα-
GEMII in the following way: P̃k (k = 1,2, . . . ,nd)
are represented by symmetric fuzzy sets. The refer-
ence points of̃Pk (k = 1,2, . . . ,nd) are set to ˆxk (k =
1,2, . . . ,nd), respectively. Each of their support-
widths is less than or equal to 2∆x. The membership
function ofP̃k is triangular or trapezoidal. It can also
represent a closed interval because the membership
function of a closed interval can be seen as a spe-
cial case of trapezoidal membership functions. Note
that the membership-function shape ofP̃k determines
the performance of noise reduction. Section 4.2 pro-
poses a method for defining the membership function
of P̃k.

Step 3: In the first generation, givẽPk (k = 1,2, . . . ,nd)
as facts and performα-GEMII in accordance with
Rk (k = 1,2, . . . ,nd). In other generations, give
P̃k (k = 2, . . . ,nd −1) as facts and performα-GEMII
in accordance withRk (k = 1,2, . . . ,nd). Let Q̃k (k =
1,2, . . . ,nd) denote the consequences deduced with
P̃k (k = 1,2, . . . ,nd), respectively. Note that the value

of ω(0) is automatically set to 1 in the process ofα-
GEMII as stated in Section 3.2 [2].

Step 4: Replace the current values ofyc
Qk

(k =

1,2, . . . ,nd) with the values ofyc
Q̃k

(k = 1,2, . . . ,nd),

respectively. The symbolyc
Q̃k

denotes the core of̃Qk.

Step 5: Update the current values ofyu
Qk

and yℓQk
(k =

1,2, . . . ,nd) by using

yu
Qk

= yc
Q̃k

+ |yc
Q̃k

− ŷk|, (9)

yℓQk
= yc

Q̃k
−|yc

Q̃k
− ŷk|. (10)

Step 6: Finish the process if the termination conditions
are satisfied; otherwise return to Step 3. The termi-
nation method is proposed in Section 4.3.

The deduced coresyc
Q̃k

(k = 1,2, . . . ,nd) present noise-
reduced learning data.α-GEMII-X denoising effectively
uses the mean operations inα-GEMII to reduce noise in
each generation of the above-mentioned iterative process.
The supports ofQk (k = 1,2, . . . ,nd) indicate the possible
ranges of the deviations caused by noise. In Section 4.3,
criteria are proposed for the determination of the timing
when to terminate the iterative process.

In Step 3,P̃1 andP̃nd are not given as facts after the first
generation to prevent the deduced cores from moving to
undesired directions in the iterative process. This is be-
cause each of̃P1 andP̃nd activates two fuzzy rules at the
least upper and the greatest lower bounds ofX . Adjacent
three fuzzy rules are required to be activated to properly
reduce noise in the iterative process as described in Sec-
tion 4.2.

α-GEMII automatically sets the value ofω(0) to 1 in
Step 3. Some variations are conceivable to reduce noise
with α-GEMII: For example, the values ofω(1) andω(0)
are changed to other than 1, controlling by using some
newly defined criteria.α-GEMII-X denoising can be fur-
ther developed in the framework proposed in this paper.

In Step 3,α-GEMII deduces the singleton cores by
setting the value ofω(1) to 1. These cores represent
the noise-reduced learning data inα-GEMII-X denois-
ing. Whenω(1) = 1, α-GEMII deduces the singleton
cores in the equivalent manner of Takagi–Sugeno fuzzy
inference in the case where the consequent parts of fuzzy
rules are defined by constant values. In this sense, noise
can be reduced also by using Takagi–Sugeno fuzzy in-
ference only in the above-mentioned case and by apply-
ing the noise-reduction principle proposed in Section 4.2.
Takagi–Sugeno fuzzy inference, however, cannot deduce
fuzzy sets, as opposed toα-GEMII. Therefore, it cannot
store the estimated deviations in the form of the supports
of consequent fuzzy sets in the same manner as shown
in Step 5. The transitional changes of the support widths
are effectively utilized to determine the timing when to
terminate the iterative process inα-GEMII-X denoising.
Further details on the timing are described in Section 4.3.
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Fig. 1. Principle of noise reduction withα-GEMII-X de-
noising in the case whereyk ≥ yk.

4.2. Principle of Noise Reduction withααα-GEMII
In the following, letyk−1, yk, andyk+1 denote the cur-

rent cores ofQk−1, Qk, andQk+1 in a generation, respec-
tively. In α-GEMII-X denoising, the compatibility de-
grees forPk−1, Pk, and Pk+1 are required to satisfy the
conditions given by the following equations:

p̃k = 1.0, (11)

p̃k−1 = p̃k+1. (12)

Under the conditions, the deduced coreyc
Q̃k

of Q̃ satisfies
the relations below when the learning data are sampled at
equal intervals:

{

yk ≥ yc
Q̃k

≥ yk, yk ≥ yk,

yk < yc
Q̃k

< yk, otherwise,
(13)

whereyk = (yk−1+yk+1)/2. The principle of noise reduc-
tion in α-GEMII-X denoising is based on Relation (13).

Figure 1 exemplifies the process of the noise reduc-
tion with α-GEMII-X denoising in the case where the
relation yk ≥ yk holds. Eq. (13) proves that the point
(x̂k,yQ̃k

) is always displaced from(x̂k,yk) toward(x̂k,yk)

in X ×Y and can never exceed the point(x̂k,yk) in each it-
eration. Sinceyk is placed on the straight line between the
points(x̂k−1,yk−1) and(x̂k+1,yk+1) in X ×Y , the noise-
corrupted data are made locally closer to a linear sequence
in [x̂k−1, x̂k+1] in each iteration. Accordingly, the devia-
tions due to noise in the learning data are globally sup-
pressed.α-GEMII-X denoising reduces noise in such a
deterministic way. The conditions with Eqs. (11) and (12)
play an important role in the iterative process for noise
reduction inα-GEMII-X denoising.

The above mentioned principle is derived by ap-
plying the essential mechanism of a noise reduction
method calledα-GEMI-ES (α-GEMINAS-based local-
evolution toward slight linearity for global smoothness)

[3]. α-GEMI-ES utilizesα-GEMINAS (α-level-set and
generalized-mean-based inference with fuzzy rule inter-
polation at an infinite number of activating points) pro-
posed for inference with sparse fuzzy rules [5]. In com-
parison withα-GEMI-ES,α-GEMII-X denoising is com-
putationally cost-effective. Moreover,α-GEMII-X de-
noising is more flexible thanα-GEMI-ES because it can
control the noise-reduction performance and convergence
speed by tuning the values of ˜pyk−1 and p̃yk+1.

The process of the noise reduction inα-GEMII-X
denoising is mathematically equivalent to the weighted
moving average in the restricted way of weighting,
wherein the weight restrictions are based on Eqs. (11) and
(12). Thus, it can be seen thatα-GEMII-X denoising it-
eratively performs the equivalent to the weighted moving
average in the scheme of fuzzy inference withα-GEMII.
Thereby,α-GEMII-X denoising can unify the fuzzy in-
ference engine and the preprocessor for fuzzy rule opti-
mization. It provides an effective way to implement fuzzy
inference and noise reduction for fuzzy rule optimization
on a single hardware platform.

4.3. A Method for Terminating Iterative Process in
ααα-GEMII-X Denoising

In this Section, a method is proposed for the determina-
tion of the timing when to terminate the iterative process
in α-GEMII-X denoising. It takes the effective use of the
support widths of consequent fuzzy sets changed along
with generations.

Let the change∆WQk(t) of the support widthWQk(t)
of Qk(t) be defined by∆WQk(t) = WQk(t)−WQk(t − 1),
whereQk(t) denotes the consequent fuzzy set in a gener-
ationt. The number of the fuzzy rules is counted in each
generation, depending on∆WQk(t) as follows:

ninc(t) : ∆WQk(t)> 0, (14)

nnon(t) : ∆WQk(t) = 0, (15)

ndec(t) : ∆WQk(t)< 0. (16)

If noise is ideally reduced along with the generations and
the learning data are closer to their true values, the value
of ∆WQk(t) becomes smaller toward zero and hence the
value ofninc(t) decreases. If the iterative process inα-
GEMII-X denoising is excessively performed, the learn-
ing data sequence is closer to a linear sequence even when
the true sequence of the learning data is not originally lin-
ear. As a result, the value ofninc(t) turns to increase when
the iterative process is excessively conducted. By the ef-
fective use of this property ofninc(t), this paper proposes
a method for the determination of the timing when to ter-
minate the iterative process inα-GEMII denoising.

As noise is not always reduced toward the true se-
quence in the iterative process,ndec(t) is also considered
together withninc(t). This paper proposes the use of the
predominance ofninc(t) overndec(t) as a criterion for de-
riving the timing when to terminate the iterative process in
α-GEMII-X denoising. In order to numerically evaluate
the predominance, the following index is proposed:

Iincp(t) = [ninc(t)−ndec(t)]/nd. . . . . . . (17)
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This index is namedthe predominance index Iincp in this
paper. Using the predominance index as a criterion, this
paper proposes a method for determining the termination
timing of the iterative process inα-GEMII-X denoising
as follows: The iterative process is terminated in around
a generation where the value ofIincp(t) changes from de-
crease to increase.

The local linearity index IL0 is also proposed to evalu-
ate the smoothness of the noise-reduced data, considering
the iterative process inα-GEMII-X denoising. The local
linearity indexIL0 is defined for a sequence of singleton
input–output pairs(x̂k,yk) (k= 1,2, ...,n) by using the fol-
lowing equation [3,6]:

IL0 = 1−D, . . . . . . . . . . . . . . (18)

where

D =
1

n−2

n−1

∑
k=2

dk, (19)

dk = |yk − yk|, (20)

yk = sk(x̂k), (21)

sk(x) =
yk+1− yk−1

x̂k+1− x̂k−1
(x− x̂k−1)+ yk−1. (22)

Note that sk(x) is a linear function through the two
points (x̂k−1,yk−1) and (x̂k+1,yk+1). Here, letzk(x) de-
note the piecewise linear function obtained by linearly
connecting the three points(x̂k−1,yk−1), (x̂k,yk), and
(x̂k+1,yk+1) (k = 2,3, . . . ,n− 1). As can be found from
the definition,IL0 indicates the degree to whichzk(x) is
close to the linear functionsk(x) locally in [x̂k−1, x̂k+1].
As the degree is higher,IL0 is closer to 1. Thereby, the
smoothness of a sequence is evaluated by the degree to
which the sequence is locally closer to a linear sequence.
The local linearity indexIL0 in a generationt is denoted
by IL0(t).

As criteria to terminate the iterative process inα-
GEMII-X denoising, bothIincp(t) andIL0(t) are effectively
applied. Along with the generations, the value ofIL0(t)
is closer to 1 as the smoothness of the noise-reduced se-
quence becomes higher, whileIincp(t) decreases and turns
to increase as the noise-reduced sequence becomes closer
to a linear sequence back away from the true sequence
of the learning data as long as the true sequence of the
learning data is not linear. Therefore, the iterative process
in α-GEMII denoising is to be terminated at the timing
when the value ofIL0(t) is large enough in around a gen-
eration where the value ofIincp(t) changes from decrease
to increase.

5. Simulations: Transitional Changes in Noise
Reduction with α-GEMII-X denoising

Simulations are performed in order to illustrate the ba-
sic properties ofα-GEMII-X denoising. Their results in-
dicate that it is feasible to applyα-GEMII-X denoising to
fuzzy rule optimization with learning data corrupted by
noise.
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5.1. Simulation Conditions
The simulations are performed under the following

conditions:

(i) Learning data are generated by the following equa-
tions:

ŷk = q(x̂k)+ rk, k = 1,2, . . . ,nd, (23)

q(x) = 0.12

[

32

(

x−0.05
0.9

)3

−48

(

x−0.05
0.9

)2

+20.16

(

x−0.05
0.9

)]

+0.25, (24)

where rk denotes the additional noise. The value
of rk is given by a uniform random number in
[−0.05,0.05]. The numbernd of the learning data is
201 and ˆxk = (k−1)/200(k = 1,2, . . . ,201). Then,
the value of∆x̂ is 0.005. Fig. 2 depicts the function
q(x).

(ii) The support width of each given fact̃Pk is set to
0.25. This setting provides ˜pk−1 = 0.2, p̃k = 1.0,
and p̃k+1 = 0.2. Therefore, Eqs. (11) and (12) hold.

5.2. Numerical Results
Figure 3 depicts the transitional changes in reduc-

ing noise in the learning data withα-GEMII-X de-
noising. The supports of the consequent fuzzy sets
are not shown in the figure for ease of visibility.
Fig. 3(a) shows the learning data which define the
initial consequent coresyc

Qk
(k = 1,2, . . . ,201) of the

fuzzy rules in accordance with Step 1.Figs. 3(b)–
(f) present the cores of the consequences deduced by
α-GEMII after the first generation, followed by the 10th,
20th, 40th, and 200th generation of the iterative process in
α-GEMII-X denoising. As can be found in these figures,
the noise is reduced along with the generations.

Figures 4 and5 show the transitional changes ofIincp
andIL0, respectively. Considering both of them as stated
in Section 4.3, the deduced cores in the 200th generation
are adopted as final output of the process ofα-GEMII-X
denoising. As can be found fromFig. 3(f), the smoothness
and the closeness to the true sequence are well-balanced
in the 200th generation.

The 7th International Workshop on Advanced Computational Intelligence and Intelligent Informatics (IWACIII2021)
Beijing, China, Oct.31-Nov.3, 2021 5



18 : 12 , October 22, 2021
Uehara, K.

Universe of DiscourseX

U
ni

ve
rs

e
of

D
is

co
ur

seY

00 0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

(a) Initially given learning data.
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(b) 1st generation.
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(c) 10th generation.
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(d) 20th generation.
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(e) 40th generation.
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(f) 200th generation.

Fig. 3. Transitional changes in noise reduction byα-GEMII-X denoising.

From the discussions above,α-GEMII-X denoising is
found to be feasible. Further studies are to be conducted
by using noise-corrupted data observed in the actual pro-
cess in order to prove the practical effectiveness ofα-
GEMII-X denoising.

6. Conclusion
A noise-reduction method has been proposed on the ba-

sis of a fuzzy inference method calledα-GEMII. The pro-
posed method has been namedα-GEMII-X denoising. α-
GEMII-X denoising iteratively performsα-GEMII to re-
duce noise in learning data sequences. A method has also
been proposed for the determination of the timing when
to terminate the iterative process. It can make a balance
between the smoothness of the noise-reduced sequences
and the closeness to the true sequences.

α-GEMII-X denoising can unify fuzzy inference based
on α-GEMII and preprocessing to optimize fuzzy rules
with noise-corrupted data. It provides a way to imple-
ment fuzzy inference and noise reduction for fuzzy rule
optimization on a single hardware platform.

Numerical results have shown thatα-GEMII-X denois-
ing properly reduces noise along with the iterations. The
proposed method for terminating the iterative process in
α-GEMII-X denoising has been found to be effective: The
smoothness and the closeness to the true sequence are
well-balanced. Thereby, the numerical results indicate the
feasibility of α-GEMII-X denoising in practical use.
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α-GEMII-X denoising may be further developed by the
effective use of the properties ofα-GEMII: the gener-
alized mean operations and the proof of convex conse-
quences. The development is expected to provide more
effective methods for unifying fuzzy inference and fuzzy
rule optimization in a single hardware platform.
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