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Abstract. Accurate localization is crucial for visual 
SLAM systems. However, most visual SLAM systems 
use traditional hand-crafted local features to find 
matches in two images, which are less stable in scenes 
with textures-less, motion blur or repetitive patterns, 
and cannot achieve the goal of lifelong SLAM. In this 
paper, we propose TRVO, a visual odometer that 
uses deep learning for feature matching. The deep 
learning network adopts the structure of CNN and 
Transformer, which can produce high-quality dense 
matches for a pair of images in an end to end form 
even in indistinctive scenes, where low-texture 
regions or repetitive patterns occupy most areas in 
the field of view. After the matching point pairs are 
obtained, the camera pose is solved in an optimized 
way by minimizing the reprojection error of the 
feature points. Experiments based on multiple 
dataset and real environments show that TRVO has 
higher relative positioning accuracy and robustness 
compared with the current mainstream visual SLAM 
systems. 
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1.   INTRODUCTION  
The technology of simultaneous localization and 

mapping (SLAM) has been greatly developed in recent 
years. As vision sensors can provide rich environmental 
texture information, there are more and more researches 
on vision SLAM algorithm in the community. As a 
widely used method, feature matching plays a vital role 
in the application of robot localization and navigation. 
However, most of these feature matching operation 
heavily depends on the descriptors of the keypoints. 
These keypoints are not stable enough due to various 
factors such as low-texture, illumination variation, 
viewpoint changes, and motion blur, and fail to complete 
the positioning task. 

The importance of keypoint description motivated its 
extensive research that has resulted in the development 
of many description techniques. Early studies focused on 
hand-crafted methods, such as SIFT [2], SURF [3], and 
ORB [4]. They still play a substantial role in computer 

vision task today. However, these traditional feature 
extraction and matching methods are easily affected by 
extreme lighting changes, motion blur, repetition and 
texture-less scenes. With the development of parallel 
computing capability of computer, the feature extraction 
and matching method based on deep learning has 
gradually replaced the hand-crafted ones to become the 
mainstream of research and application in most computer 
vision tasks for it is more robust in challenging scenes. 

Recent works attempt to solve the problem of 
traditional hand-crafted methods by establishing dense 
matching in pixel level. Matching pairs are directly 
selected from dense matching results with high 
confidence, which omits the process of feature detection. 
However, the receptive field of dense features extracted 
by convolution is limited, and it cannot distinguish the 
regions with high similarity. Therefore, the author of 
LoFTR [5] integrated Transformer [6] into feature 
matching and proposed a novel local feature matching 
method without detection process. Self and cross 
attention layers are used to process the dense local 
features extracted from convolution backbone. 
Compared to detector-based baseline methods, LoFTR 
can generate high-quality matches even in indistinctive 
regions with low-texture, motion blur, or repetitive 
patterns. 

In this paper, we propose TRVO, a visual odometry 
with Transformer local feature. We introduce the LoFTR 
method into the visual odometry, and get more accurate 
pose estimation results as LoFTR can produce 
high-quality feature matches between two images. 
Firstly, two consecutive frames in a continuous image 
stream are put into the LoFTR network. Then the visual 
odometry system minimizes the reprojection error 
through nonlinear optimization, and iteratively obtains 
the optimal pose estimation between two frames. The 
remainder of this paper is organized as follows: the 
second part introduces the related research work of visual 
odometry. The third part introduces the working 
principle of LoFTR network and the derivation of 
reprojection error formula. In the fourth part, TRVO is 
extensively evaluated on dataset and real environments. 

2. RELATED WORK 
In this section, we will review the existing work 

related to visual SLAM and image feature matching. 
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2.1. Visual  SLAM System 
The general flow of the visual SLAM is shown in Fig. 

1, it takes camera as the main sensor to establish the 
spatial relationship between camera and surrounding 
environment. For the sequence images or videos 
captured by the camera with a given internal parameter, 
the visual SLAM system calculates the camera motion 
trajectory and establishes the environment map by 
estimating the camera motion between the key frames. 
The visual front end is also known as the visual odometry, 
which uses the image data collected by the sensor to 
estimate the position and orientation relationship 
between key frames. 

 

The visual odometry can be divided into two 
categories: feature-based method and direct method. The 
visual front-end based on feature points has been 
considered as the mainstream visual odometry method 
for a long time. MonoSLAM [7] is the first real-time 
monocular vision SLAM system, which uses extended 
Kalman filter as the back end, tracks the very sparse 
feature points in the front end, and updates its mean and 
covariance by taking the current state of the camera and 
all landmarks as state variables. PTAM [8] proposes to 
parallelize the tracking and mapping process, and 
incorporates nonlinear optimization into SLAM system 
for the first time. Meanwhile, PTAM introduces key 
frame mechanism to reduce the computational 
complexity of optimization. ORB-SLAM [9-11] is a 
representative SLAM system of feature-based method. 
The whole system revolves around the calculation of 
ORB features, it can detect loops in large-scale motion 
and relocate if the tracking is lost. The VINS [12] system 
adopts the fusion SLAM scheme of vision-inertial, and 
the visual odometry adopts the sparse direct method, that 
is, only the feature points are calculated, not the 
descriptors, and the optical flow method is used to track 
the motion of the feature points, which can save the time 
of descriptor calculating and matching. 

With the development of the application of deep 
learning in computer vision tasks, there have been some 
researches on visual slam utilizing deep learning for 
keypoints detect and match in recent years. For example, 
GCNv2 [13] integrates deep local features into 
ORB-SLAM2 framework. DXSLAM [14] is similar to 
GCNv2, which is also based on ORB-SLAM2 and uses 
HF-Net [15] to generate SuperPoint-like [16] feature 
points and descriptors. DXSLAM is with higher 
robustness in indistinctive scenes such as low-texture 
and illumination change compared with slam system 
which uses hand-crafted keypoints and descriptors. 

2.2.    Feature extraction and matching for images 
In the numerous traditional works of feature detection 

and matching, SIFT and ORB are arguably the most 
successful methods, they are widely used in many 3D 
computer vision tasks. However, with the development 
of deep learning, the feature extraction and matching 
method based on learning has a better performance in 
dealing with the challenges such as extreme illumination 
and viewpoint change. MagicPoint [17] is the first 
successful local feature detection method based on 
learning. Then SuperPoint proposed a self-supervised 
training method through the improved homography 
matrix based on MagicPoint. The above two methods are 
to find the matching point pairs between the extracted 
keypoints by the way of nearest neighbor search. 
SuperGlue [18] proposed a local feature matching 
method based on learning. It takes two sets of keypoints 
with descriptors as input, and uses graph neural network 
(GNN) to learn the matches of the two sets of keypoints.  
However, as a detector dependent method, it cannot 
generate repeatable features in indistinctive regions. 

Recently, researchers have proposed some local 
feature matching methods without detector, such as 
LoFTR and Pach2Pix [19]. They remove the feature 
detection step, and perform feature detection, descriptor 
calculation and feature matching in a single network. It is 
noteworthy that the matches of two images generated by 
Pach2Pix network need to be further selected by 
RANSAC [20] method. While LoFTR introduces the 
Transformer structure, which will be described in detail 
in the third part, thus can obtain the global information of 
the image through self and cross attention layers. Dense 
matching results can be obtained even in regions with 
low-texture using LoFTR. However, it is difficult for 
detector dependent methods to generate repeatable 
keypoints in such regions with low distinguishability. 
Therefore, in our TRVO system, we use the matching 
result generated by LoFTR as the input of the visual 
odometry, and then minimize the reprojection error by 
nonlinear optimization method to get the pose estimation 
results of each frame. 

3. METHOD 
3.1. System Overview 

The visual odometry system proposed in this paper is 
shown in Fig. 2. The framework is similar to the front 
end of ORB-SLAM. The system processes two adjacent 
frames collected by the camera sensor each time. That is 
to say, the last frame and the current frame are passed 
through the LoFTR network to get the feature matching 
result. The network will score each pair of matching 
points, select the matching point pairs whose scores are 
greater than our preset threshold, and calculate the 
coordinates of these points in 3D space. Then, according 
to the pose results of the last frame obtained in the 
previous optimization, the spatial coordinate positions of 
these matching point pairs relative to the origin of the 
world coordinate system (the spatial position of the 
camera when taking the first frame image) are generated,  

Fig. 1  Visual SLAM system flow. 
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and these positions are re-projected to the current frame. 
The relative pose relationship between the last frame and 
the current frame is obtained by minimizing the 
reprojection error in an optimized way. If the whole 
process continues, a complete visual odometry can be 
obtained. 

3.2. Transformer and LoFTR 
Transformer is a classic natural language processing 

(NLP) model proposed by Google in 2017. It uses self 
and cross attention mechanism to enable the model to 
train in parallel and obtain global information. Recently, 
Transformer has attracted more and more attention in 
computer vision tasks, such as image segmentation, 
object detection, semantic segmentation and other tasks. 

The architecture of Transformer is shown in Fig. 3, 
which is mainly composed of encoder and decoder. 
Encoder is composed of N identical layers, and each 
layer is composed of two sub layers, namely multi head 
self- attention and fully connected feed forward network. 
The structure of decoder is similar to that of encoder, but 
a multi attention sub layer is added. In addition to 
encoder and decoder, it is necessary to encode the raw 
data in the preprocessing period, so that the network can 
provide global receptive. For more details, please refer to 
[6]. 

The LoFTR network use self and cross attention layers 
in Transformer to obtain feature descriptors that are 
conditioned on both images. As shown in Fig. 4 [5], the 
LoFTR network consists of four parts: for the first step, 
the coarse-level and fine-level feature maps are 
generated for the input image pair through a CNN 
backbone. Then the coarse feature maps is flattened to 
one-dimensional vector, and positional encoding is 
added. The added features are then processed by the 
Local Feature Transformer module, which has Nc 
self-attention and cross-attention layers. Next, the 
transformed features are matched by a differentiable 
matching layer. In this case, a differentiable matching 
layer confidence matrix Pc can be obtained, the a 
coarse-level match prediction Mc are selected according 
to the confidence threshold and mutual-nearest-neighbor 
criteria in Pc. Finally, for each coarse-level match 
prediction, a local window with size w × w is generated 
on the corresponding position of the fine-level feature 
maps. The Features in this window will be processed 
again by the Local Feature Transformer module, yielding 
a sub-pixel level match prediction. 

3.3. Nonlinear optimization of reprojection error 
In the camera pose solving problem, if only the 

matching point pairs in two images are known, that is, 
2D-2D point pairs, it is necessary to use at least eight 
pairs of point to calculate the relative motion of camera 
by epipolar geometry method, and there are some 
problems such as initialization, pure rotation and scale. If 
the 3D position of one of the feature points in two images 
is known, at least three pairs of point are needed to 
estimate the camera motion. Therefore, for convenience, 
we will use RGB-D camera as the sensor for system 
design and experiment. 

If the 3D position of n feature points is known, a 
nonlinear least square problem can be constructed 
directly to obtain the relative motion of the camera 
between two images by minimizing the reprojection 
error. This linear optimization problem can be easily 
solved by g2o [21], Ceres and other optimization 
libraries. Considering a set P contains n 3D points and 
their projection p in one image, our goal is to calculate 
the pose T of the camera, which is composed of rotation 
R and displacement t. Suppose that the spatial coordinate 
of a 3D point is [ ], , T

i i i iX Y Z=P   and the pixel 

coordinate of its projection in the image is [ ], T

i i iu v=u ,  

 
Fig. 2  The framework of the proposed visual odometry system. The 
pipeline is similar to the front end of ORB-SLAM, with deep features 
incorporated into the system. 
 

Fig. 3   The architecture of Transformer 
 

http://www.ceres-solver.org/
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then the relationship between the pixel position and the 
3D point position satisfies the following equation 

    
( )

( )
1

0
0
0 0 1

i

i i

uv

i x x

i i i y y

u
Z Z v

f c
f c= = +

= + =

  
  
  
     

P RP t

K RP t KTP

         (1) 

 
where K  is the intrinsic parameter matrix of the camera, 
and uvP  is the homogeneous coordinate representation of 

iu . At this time, because the pose of the camera is 
unknown, there is an error between the two sides of (1). 
We sum all the errors of n feature points and construct 
the least square problem (2). We can find the optimal 
pose estimation when the error is minimum. 
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After the optimization problem is constructed, Gauss- 

Newton, Levenburg-Marquardt and other optimization 
algorithms can be used to solve the pose, but the premise 
is to know the derivative of each error term with respect 
to the optimization variable. Now, we transform Pi to 
camera coordinate to get p' 
            ( )( ) [ ]
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where ξ  is the lie algebra representation of the camera 
pose, the coordinates in the formula are homogeneous, 
and we take the first three-dimensional after trans- 
formation. According to the projection model of the 
camera, the following formula can be obtained 
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When calculating the errors, we make the difference 

between the coordinate value calculated by the above 
formula and the actual pixel value measured in the image. 
According to the chain rule we have 
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Then we have the Jacobian matrix by multiplying the 

above two terms 
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Fig. 4   LoFTR pipeline 
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4. EVALUTION 
In this section, we perform a series of experiments to 

evaluate our proposed TRVO system. As mentioned in 
(3.3), we use Intel RealSense D435i camera (an RGB-D 
camera with IMU) and RGB-D dataset for convenience. 
We compare the positioning accuracy of TRVO with 
open source solutions such as ORB-SLAM2 and 
DXSLAM. All the methods are compiled and run on a 
laptop computer with i7-7700HQ processor and GTX 
1050 Ti graphics card in Ubuntu Linux system. 

4.1. Feature matching 
In the first experiment, we compare the feature 

matching performance of ORB feature, HF-Net and 
LoFTR network. The images were taken from the TUM 
RGB-D dataset, Aachen Day-Night dataset [22] dataset 
and corridor environment captured by Intel RealSense 
D435i camera. 

Experimental Setup. For ORB feature and HF-Net, 
given a pair of images, keypoints and descriptors of each 
image are generated, then we can get matches according 
to Hamming distance between descriptors. After that, 
RANSAC algorithm is used to further filter the correct 
matching results. For LoFTR network, we use the 
confidence scores produced by the network to filter out 
outliers. The confidence represents a trade-off between 
quality and quantity of the matches. In this experiment, 
the confidence score threshold was set to c = 0.0/0.5/0.8. 

Results. We show qualitative results in Fig. 5. The 
ORB features are sparse, and there are many 
mismatches; The features learned by HF-Net are also 
sparse, but with higher matching accuracy; LoFTR 
network generates dense match pairs, we can select 
high-quality matching points according to high 
confidence. Compared with ORB feature and HF-Net, 
LoFTR performed better under low-texture environment. 
The results show that LoFTR is a better choice for indoor 
environment with low-texture regions. 

4.2. Localization on TUM RGB-D dataset 
To evaluate the positioning accuracy of our proposed 

visual odometry, we carry out visual positioning 
experiments on TUM RGB-D dataset, which is the 
mostly used SLAM benchmark in literature. It provides a 
variety of data sequences with precise ground-truth 
trajectories. In this experiment, we selected Handheld 
SLAM, Robot and Structure vs. Texture categories 
including 11, 1 and 8 subsequences respectively. We test 
ORB-SLAM2, DXSLAM and TRVO on the same device, 
and compare the positioning accuracy of these three 
systems in different sequences. Fig. 6 shows the motion 
trajectory and relative pose error drawn by evo tool. Due 
to space limit, we only show the trajectory on fr1_desk 
and fr2_pioneer_360 sequence. It can be seen that 
ORB-SLAM2 and DXSLAM tracked lost for a short 
time on fr2_pioneer_360 sequence, because there are not 
enough valid keypoints. While TRVO generated a 
complete trajectory thanks to LoFTR can provide dense 

matches in challenging environment. It should be 
emphasized that TRVO is only a simple visual odomery, 
its absolute positioning error is not as good as the other 
two algorithms due to error accumulation. However, 
TRVO is more robust and has higher relative positioning 
accuracy, which can be confirmed in Table.1. Table.1 
lists the performance of the three systems on all test 
sequences. Note that we use relative pose error to 
evaluate the positioning accuracy. Because TRVO is just 
a visual odometry, which equivalent to the front end of 
the visual SLAM system, there will be a certain 
cumulative error in pose estimation, while the modules 
of back-end optimization, loop detection and 
re-localization in ORB-SLAM2 and DXSLAM will 
reduce the cumulative error to a certain extent and make 
the absolute pose error lower. Therefore, in order to 
make the comparison as fair as possible, we choose the 
relative pose error as the evaluation criteria. From the 
table, we can see that TRVO has the lowest relative pose 
error in most of sequences. 

4.3. Localization on corridor environment 
We collected a sequence of images collected by Intel 

RealSense D435i camera in corridor with texture-less 
walls, corresponding to the texture-less scene in Fig. 5. 
We held the camera and walk around the corridor, we 
show the estimated trajectory in Fig. 7. ORB-SLAM2 
and DXSLAM failed to generate a complete trajectory, 
they tracked lost soon after initialize. While TRVO 
completed the whole process as we expected. 

5. CONCLUSIONS 
In this paper, we propose TRVO, a visual odometry 

based on learning method. The TRVO get feature 
matches between images form LoFTR network, and uses 
nonlinear optimization method to minimize the 
reprojection error to estimation the pose of the camera. 
This learning-based feature matching network 
incorporates transformer structure, which can make full 
use of the global information of the image. Furthermore, 
our experiments show that TRVO system gives pose 
estimates with much lower relative pose error and it is 
more robust in challenging environments with 
low-texture or repetitive patterns, while hand-crafted 
based method often fails in such a scenario. However, we 
noted that the LoFTR network is time-consuming 
compared with hand-crafted methods, and the real-time 
performance cannot be guaranteed. In addition, LoFTR 
is a detector-free matching approach, which directly 
regresses matches from a pair of images. As such, the 
feature matching results generated by image pairs (A, B) 
and (B, C) may be slightly different for the same frame 
image B. As a result, TRVO cannot do back-end 
optimization, loop detection and relocation as 
ORB-SLAM and DXSLAM, it is the common inferiority 
of all detector-free methods in visual odometry. We 
leave it as our future work to accelerate the inference 
time and add descriptors for the network. 

https://vision.in.tum.de/data/datasets/rgbd-dataset/download
https://vision.in.tum.de/data/datasets/rgbd-dataset/download
https://github.com/MichaelGrupp/evo
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       (a)fr1_desk                              (b)fr2_pioneer_360 

 
  (c)fr1_desk_xyz 

 
(d)fr1_desk_rpy 

dataset 
evo_rpe 

 (trans_part and rot_part, unit-less) 
ORB-SLAM2 DXSLAM TRVO 

fr1_360 0.240654 0.013515 0.012753 
fr1_desk 0.014376 0.016301 0.012022 
fr1_desk2 0.015431 0.016248 0.012817 
fr1_floor 0.006921 0.005871 0.007212 
fr1_room 0.013139 0.011891 0.010296 
fr2_360_h 0.017897 0.013530 0.021250 

fr2_360_k 0.014510 0.013143 0.016878 
fr2_desk 0.006578 0.007624 0.006971 
fr2_l_n_l 0.017060 0.018296 0.026593 
fr2_l_w_l 0.020013 0.015282 0.022142 
fr3_l_o_h 0.007284 0.007479 0.007094 
fr2_p_360 0.023103 0.026169 0.022892 
fr3_n_n_f 0.028068 -a 0.023827 
fr3_n_n_n_w - - 0.027900 
fr3_n_t_f 0.030258 0.028255 0.022806 
fr3_n_t_n_w 0.014841 0.014618 0.014105 
fr3_s_n_f 0.010663 - 0.007317 
fr3_s_n_n 0.019516 - 0.009913 
fr3_s_t_f 0.012829 0.012706 0.010329 
fr3_s_t_n 0.012155 0.011895 0.009827 

a. ‘-’ means the algorithm fail to track all the frames 
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Table. 1  Mean relative pose error calculated by evo.  
 

Fig. 6   Estimated trajectory on TUM dataset 

Fig. 7   Estimated trajectory on corridor 
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