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Abstract. As a new mode of resource and service
provision, cloud computing provides a cost-effective
deploying environment for hosting scientific applica-
tions. More and more applications modeled as work-
flows are being moved to the cloud. However, the
traditional heuristic and metaheuristic algorithms en-
counter some problems that cannot be ignored in solv-
ing the scheduling problem, such as difficult to get the
optimal solution or consuming too much time. In this
work, we design the corresponding workflow schedul-
ing model based on Deep Q-Network (DQN) and
Proximal Policy Optimization (PPQO) algorithm with
makespan minimized, and explore the performance
difference of DQN and PPO algorithms in workflow
scheduling through different experiments. Firstly, a
cloud workflow scheduling environment is developed
based on the cloud workflow task model. Secondly,
according to the DQN and PPO algorithm, the agent
models are designed. Then we train the resulting
workflow scheduling models. During the training pro-
cess, the agent (actor) learns and accumulates expe-
rience constantly to optimize the scheduling results.
Finally, experiments are conducted and results show
that both PPO algorithm and DQN algorithm show
excellent characteristics in solving the cloud workflow
scheduling problem, which also reflects the advantages
of deep reinforcement learning in sequential decision
optimization.

Keywords: Cloud computing, Workflow scheduling,
Reinforcement learning, DQN algorithm, PPO algo-
rithm

1. INTRODUCTION

Through the continuous development of cloud computing
technology and increasing market demand, cloud comput-
ing has made remarkable strides in academic research and
industrial applications [1]. At present, more and more
complex applications modeled as workflows are being
actively migrated to the cloud. Workflow scheduling is
a process of mapping inter-dependent tasks on a set of
available resources so that workflow applications are able
to complete its execution considering the quality of ser-

vice (QoS) of cloud service consumers and the efficiency
of cloud platforms [2]. However, it is well known that
scheduling of workflow is NP-hard [3], and becomes even
harder in the cloud due to not only the large size and com-
plexity of workflows but also the elasticity and hetero-
geneity of cloud resources.

In order to solve the workflow scheduling problem,
plenty of heuristic and metaheuristic algorithms have
been proposed to find near-optimal scheduling solutions
[4]. Heterogeneous Earliest Finish Time (HEFT) and
Critical Path on a Processor (CPOP) [5] are two typical
list scheduling algorithms. Besides, Yuan et al. [6] is
a heuristic algorithm with deadline-constrained cost opti-
mization for workflow scheduling by introducing task pri-
ority. Heuristics are experienced-based and provide some
specific scheduling rules when selecting a proper resource
for each workflow task and have a relatively lower time
complexity. Metaheuristic algorithms, such as Genetic
Algorithm (GA) [7], Particle Swarm Optimization (PSO)
[8], Ant Colony Optimization (ACO) [9], are the high-
level problem-independent algorithms which are based
on random search techniques, while they require a large
number of iterations during the evolution process and has
a high computational cost.

Considering the weakness of the heuristic and meta-
heuristic method, Reinforcement Learning (RL) is an in-
teresting alternative method, where agents can improve
scheduling performance through continuous learning. Cui
et al. [10] provided an RL-based multiple directed acyclic
graphs (DAGs) workflow scheduling scheme to optimize
the deadline under given cloud computing resources. Wei
et al. [11] regarded the service composition problem
as a sequential decision-making process, and solved it
by means of a Q-learning algorithm in a dynamic and
stochastic cloud environment. Kaur et al. [12] developed
a deep Q learning-based heterogeneous earliest-finish-
time (HEFT) algorithm, which closely integrates the deep
learning mechanism with the task scheduling heuristic
HEFT. Aiming at the single objective workflow schedul-
ing problem in cloud environment, this paper designs the
corresponding workflow scheduling model based on DQN
and PPO reinforcement learning algorithm with the goal
of optimizing makespan (workflow execution time), and
explores the performance difference of DQN and PPO al-
gorithms in workflow scheduling through experiments.

The rest of the paper is organized as follows. Section 2
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is the formulation of cloud resource, workflow and work-
flow scheduling. Section 3 demonstrates our proposed al-
gorithm. Section 4 is experimental results as well as anal-
ysis. Finally, we conclude the paper in Section 5.

2. PROBLEM FORMULATION

2.1. Basic definitions

Scientific workflows are represented as DAGs, for exam-
ple, a sample scientific workflow is depicted in Fig. 1.
In this work, a workflow application can be expressed as
DAG, G = (T,E), where T = {#,t2,...,t,} is a set of n
tasks and E = {e;j|1 <1i, j < n,i# j} is a set of edges
which represent the dependencies between tasks. For ex-
ample, ¢;; indicates that #; is the parent task and ¢; is the
child task. Task #; cannot be executed until its parental
task #; is finished. A task without a parent task is called an
entry task, and a task without a child task is called an exit
task. The workflow starts and ends with the entry and exit
tasks, respectively.

G@@ G@*@

oo &

Fig. 1. An example of a workflow

We consider that an laaS provider offers different types
of virtual machines (VMs) to its clients. These VMs have
different processing power and price model, which can be
represented as V={V} ,V,,...,V,, }, where m is the number
of VMs. These VMs have different processing capacities
in terms of Million Instruction per Second (MIPS) which
can be denoted by py, k € [1, m]. We believe that all VM
categories contain adequate memory to run any workflow
tasks and the data transferred in and out of the general
storage approach are free.

2.2. Scheduling formulation

In workflow scheduling problems, each task can be allo-
cated to different VMs, and therefore the different pro-
cessing capability of VMs results in a different perfor-
mance like makespan. The execution time (ET) of task
t; on resource V; can be calculated as follows:

Z;

ET(i,k) = 5
k

(1)
where Z; is the instruction length of task # in terms of
Million Instruction (MI) and py, is the processing capacity
of Vi. The start time ST (¢;)and finish time FT'(1;) of task
t; can be calculated as follows:

ST (¢;) = max {avail (Vk), max
tpEpred(t;)

(FT(rp»} @

FT(t;)=ET(i,k)+ST(#) . . . . . . . . (3

where avail(Vy) is the available or ready time of V; on
which #; is scheduled to execute, pred(t;) is used to denote
the set of immediate parents of task #;. Note that when ¢; =
tentrys ST (tensry) = 0. Otherwise, ST (¢;) can be computed
as Eq. 2. Then, the makespan can be obtained as follows:

makespan:maig({FT(t;)} N ()
tie

where T is a set of tasks in the workflow.

3. REINFORCEMENT LEARNING BASED
SCHEDULING

3.1. Reinforcement learning framework

In order to solve the workflow scheduling problems with
makespan minimization by RL algorithms, we introduce
an RL-based framework, which consists of two parts: an
agent and environment, as shown in Fig. 2. The interac-
tion between an agent and environment can be depicted as
follows: at each time-step ¢, the agent first obtains the cur-
rent state s; containing all the environmental information
and then takes an action a;. Influenced by the implemen-
tation of selected action a,, the environment changes its
state from s, to s,41 and generates a reward 7, in return
of action q;.

Reward

Action

Environment

State

Fig. 2. A framework of reinforcement learning

3.2. DQN-based scheduler

Q-learning is based on the idea of temporal difference
(TD) learning and is well suited for solving sequential de-
cision problems. Q(s, a) is a parameterized value func-
tion to estimate all-action values in all states. At time-step
t, after taking action a; in state s; and observing the imme-
diate reward 7,4 and state s, 1, the update of Q-learning
is as follows:

Qi1(8t, ar) = Qs (51, ar)+
o (141 + ymax,Q; (i1, a) — Qs (51, ar))

where « is the learning rate. y € [0, 1] is the discount
factor that is used to trade off the importance between the
immediate reward and later reward.

Based on Q-learning, Mnih et al. [13] proposed a typ-
ical algorithm, DQN, which is able to combine RL with
a class of artificial neural networks known as deep neural

(&)
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networks. In DQN, a nonlinear function approximator,
such as a neural network, is used to represent the action-
value function, so as to solve the storage and represen-
tation problem caused by the high-dimensional and con-
tinuous states or actions. It uses an online neural network
parametrized by 6 to approximate the vector of action val-
ues for each state, and a target network parameterized by
6* which is periodically copied from 6 to reduce oscilla-
tion during training. Meanwhile, DQN using experienced
samples drawn from the replay buffer. At time-step ¢, the
parameters 6, can be updated as follows:

6, 6+ "™~ (s, ai: 8)] Vo, 051, a5 6)(6)
where the target value Y,DQN used by DQN is defined as:
VP = re - ymaxQ(srr, @ 67) .. .. ()

3.3. PPO-based scheduler

PPO, a family of policy optimization methods that use
multiple epochs of stochastic gradient ascent to perform
each policy update [14]. These methods have the stability
and reliability of trust-region methods, and are much sim-
pler to implement. In PPO, parameters of actor (agent)
is 6. At each time-step, we can get a reward r, and the
final reward for a complete task is R. The actor contin-
uously interacts with the environment, and we get a se-
quence T = {sy, ai, $2, a2, ..., ST, ar}, where T is the
total time-steps.

The reward obtained by the sequence is the sum of the
rewards obtained at each stage. Therefore, the expected
reward is defined as:

Ro=YR(tpe(r) . . . .. ... ... (®

where pg(7) is the probability of sequence T occurrences,
Ry is the expected reward value, R(7) is the sum of the
rewards obtained at each stage. Our expectation is to ad-
just the actor’s strategy to maximize the expected reward,
so we use the expectation function and use the gradient
boosting method to update our network parameters as fol-
lows:

VRg = Z Z R(t
n 1t=
where Vf(-) = f(-)VIlog f(-), N is the number of all re-
wards R, and T, is the total number of timesteps under the
corresponding state.

")Vlogpe(ar's}) . C)

4. EXPERIMENTS AND ANALYSIS

In this section, we first introduce the experiment set-
ting, including resources and workflows. Then the perfor-
mance of DQN and PPO based RL algorithms are tested
respectively for scheduling workflows.

Scheduling Workflows in the Cloud

4.1. Experiment setting

For the purpose of model verification, the proposed al-
gorithm is used to schedule parallel workflows in dif-
ferent scientific fields provided by the USC Informa-
tion Sciences Institute [15]. As shown in Fig. 3, we
use five typical scientific workflows: CyberShake work-
flow which characterizes earthquake hazards in a region,
Epigenomics workflow which is used to automate vari-
ous operations in genome sequence processing, LIGO’s
Inspiral Analysis workflow which generates and analyzes
gravitational waveforms from data collected during the
coalescing of compact binary systems, Montage workflow
which stitches together multiple input images to create
custom mosaics of the sky, Sipht workflow which is used
to automate the search for untranslated RNAs for bacterial
replicons in the National Center for Biotechnology Infor-
mation database.

For the cloud platform, we assume that it consists of a
cloud service provider and offers different types of VMs,
each with different processing capabilities. In this work,
the cloud service provider is assumed to provide six dif-
ferent types of VMs that have different configurations as
shown in Table 1.

Table 1. Details of VM types from Amazon EC2

Memory Performance

vlype  v-CPU “Gig)”  (MIPS)
t3.medium 2 8 4065
t3.large 2 8 5035
cS.large 4 16 4521
m5.large 4 16 4575
cSn.large 8 32 5105
rSa.large 8 32 4549
al.4xlarge 8 32 16861

4.2. Performance comparison

The current mainstream methods of RL include value-
based and policy-based algorithms. In this work, we first
choose and build two typical algorithms DQN and PPO
respectively, and then compare their performance in the
same experimental environment and with the same exper-
iment configurations. This experiment is divided into two
parts. One is five DAG tasks are scheduled separately.
The other part is that five DAG task parallel scheduling.
The parallel scheduling results of five DAGs are not equal
to the simple sum of the scheduling results when they
are separately scheduled, because the parallel schedul-
ing principle of five DAGs is different from that of sin-
gle DAG. In parallel scheduling, tasks in different DAGs
can be executed alternately. For example, a task in Cyber-
Shake is being executed at a time-step, In the next time-
step, a task in the Inspiral may be executed, which greatly
improves the utilization of resources and reduces the con-
sumption of time.
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Fig. 3. The sample structures of workflow applications

4.2.1. Scheduling of five workflows based on DQN and
PPO algorithm

The trend of makespan of different workflows based on
DQN and PPO is recorded as shown in Fig. 4 and Fig.
5, respectively. In Fig. 4, we can see that makespan de-
creases rapidly when the training batch is 0 to 100, which
is the exploration period of DQN-based models. When
the training batch reaches about 100, the makespan of the
five DAGs converges to about 12 seconds, 12 seconds, 10
seconds, 9 seconds and 12 seconds respectively, and re-
mains unchanged when the training batch is more than
100. In Fig. 5, we can see that in the five DAG schedul-
ing results, the makespan of CyberShake and Sipht all de-
crease rapidly when the training batch is 0 to 100. When
the training batch reaches about 100, the makespan of Cy-
berShake and Sipht converges to about 11 seconds and 14
seconds respectively, and remains stable when the train-
ing batch is more than 100. Makespan of Epigenomics,
Inspiral and Montage converged to 13 seconds, 12 sec-
onds and 11 seconds respectively when the training times
are about 200.

4.2.2. Scheduling of five parallel workflows based on
DQN and PPO algorithmn

We further test the scheduling performance of DQN and
PPO based model under five parallel workflows. Dur-
ing the training process, the trend of makespan under
DQN and PPO is recorded as shown in Fig. 6. In Fig.
6 (a), the experimental results show that makespan de-
creases rapidly when the number of training is 0-200,
which indicates that the DQN-based model is approach-
ing convergence when episodes of training reach 200.
Then, the DQN-based model continues to explore, and
there is a fluctuation between 200-600 episodes. Finally,
the makespan of scheduling schedule gradually stabilizes
after 600 training times, converges to about 36s. It is
worth noting that the curve has a peak when the episodes
are about 600. The reason is that we add randomness
when the agent chooses the action, which makes the agent
choose the action randomly according to a certain prob-
ability, and then the scheduling result has a large error
with the correct scheduling result. This probability can

increase the exploratory in the early stage of training,
and avoid falling into the local optimum. Finally, it will
decrease with the increase of training batches. In Fig.
6 (b), The experimental results show that makespan de-
creases rapidly when the training times are about 0-200.
At this time, PPO-based model is exploring the schedul-
ing scheme in the right direction. Makespan decreased
slowly from 200 to 800, and it was stable when the train-
ing times reached 800, and finally converged with about
60s.

When scheduling five DAGs separately, the conver-
gence speed of PPO-based model is not fast, it needs to
run many time-steps to get better scheduling results. So,
the stability of PPO algorithm is not very good. However,
from Fig. 6 (b), we can see that although the scheduling
result converges to about 60 seconds, there is still a point
that makespan is less than 60 seconds in the scheduling
process. In other words, 60 seconds is not the upper limit
of the optimization ability of PPO algorithm, PPO algo-
rithm can explore a better scheduling scheme that makes
makespan less than 60 seconds, which also shows that we
can continue to improve the PPO algorithm, so as to im-
prove the ability of PPO to optimize makespan and find
the best scheduling scheme in workflow scheduling. Be-
sides, we can see that the sum of makespan obtained by
scheduling five DAGs separately is larger than that ob-
tained by scheduling five DAGs in parallel, which also re-
flects the advantages of parallel scheduling in improving
resource utilization and reducing makespan.

From the above experimental results, we can see that
when scheduling five DAGs in parallel, the DQN algo-
rithm converges the makespan of more than 160 seconds
to about 40 seconds. When scheduling five DAGs sep-
arately, the makespan in the first 20 seconds converges
to about 10 seconds, and the convergence speed is very
fast, which is due to the good performance of DQN algo-
rithm. At the same time, when running the code, we can
get a better solution every time, which shows that the sta-
bility of DQN algorithm is also good. In addition, from
Fig. 6 (a), we can see that although the scheduling re-
sult converges to about 40 seconds, there is a point that
makespan is less than 40 seconds in the scheduling pro-
cess. That is to say, 40 seconds is not the upper limit of
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Fig. 5. Average makespan based on PPO

the optimization ability of DQN algorithm. DQN algo- 5. CONCLUSION

rithm can explore a better scheduling scheme that makes

makespan less than 40 seconds. This also indirectly shows  In this work, a comparison study of DQN and PPO based

that DQN algorithm has great potential in solving work- ~ reinforcement learning for scheduling workflows in the

flow scheduling problems. cloud is presented. A cloud workflow scheduling envi-
ronment is designed, and DQN and PPO based agents
and their interaction interfaces with the environment are
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Fig. 6. Average makespan of five parallel workflows based
on DQN and PPO

developed. During the training process, the agent learns
and accumulates experience constantly, while optimizes
the scheduling results. Finally, the near optimal schedul-
ing solutions can be obtained by our well trained rein-
forcement learning model. Then we conduct a series of
comparative experiments to verify its performance and the
experimental results show that both PPO algorithm and
DQN algorithm have excellent characteristics in solving
the cloud workflow scheduling problem, which also re-
flects the advantages of deep reinforcement learning in
solving this kind of optimization problems. In future
work, we plan to reduce the possibility for standard DQN
to selecte overestimated values and optimize parameters
in PPO so as to make more accurate scheduling decisions.
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